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Abstract

Artificial Neural Networks (ANN) have been used for a wide variety of chemical applications because of their ability to learn system features.
This paper presents the use of feedforward neural networks for dynamic modeling and temperature control of a continuous yeast fermentation
bioreactor. The analytical model of this nonlinear process is also presented and it was used to generate the training data. Different ANNs were trained
using the backpropagation learning algorithm. To avoid over-fitting of the data and achieve the best prediction ability with the simplest structure
possible, a pruning algorithm is proposed for topology optimization of the ANN. The resulting ANNs were introduced in a Model Predictive Control
scheme to test the control performance of the structure. The robustness of this control structure was studied in the case of setpoint changes and
noisy temperature measurement, when the network used for prediction had been trained including noisy data in the training set. Results obtained
with Linear Model Predictive Control (LMPC) as well as with proportional-integral-derivative (PID) control are also presented and compared with
those obtained with the neural network model based predictive control (NNMPC) strategy. The use of inverse neural models for dynamic modeling
and control of this process is also discussed and exemplified via simulations.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Model Predictive Control (MPC) is one of the most
widespread advanced process control strategies in the chemical
industries [1]. The main idea of the MPC algorithm is to solve an
optimization problem to find the control vector trajectory, which
optimizes some kind of performance objective over a future
prediction horizon. Predicted values of the controlled param-
eters are obtained from the process model. Most of the model
based control algorithms are based on linear models, because
of the numerous techniques available for identification and con-
troller design and optimization. Linear Model Predictive Control
(LMPC) is preferred for practical implementation also because
of the favorable computation time requirements. However, most
of the chemical processes are highly nonlinear, with widely vary-
ing operating conditions. In these situations LMPC technology
cannot be applied readily. The drawbacks of the LMPC can be
avoided using for prediction a nonlinear model of the process
instead the linear one. In the Nonlinear Model Predictive Control
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(NMPC) techniques predictions are usually obtained by integrat-
ing the analytical model of the process, described for example
by a set of differential equations. However, this approach has
two main disadvantages compared to LMPC methods:

(a) It requires the elaboration of a complex, analytical model
of the process with good accuracy, which in the case of the
most chemical processes can be a very arduous task.

(b) The optimization problem in the NMPC, that requires the
repeated solution of the analytical model, might require
great computational effort and time, which for large scale,
complicated processes can become prohibitively large.

These shortcomings can be avoided using Artificial Neural
Networks (ANNs) as the nonlinear model used in the control
movement computation. The advantageous properties of neural
networks, such as parallel computation, nonlinear mapping and
learning capabilities make them an alluring tool in many chem-
ical engineering problems. In the past 30 years there has been
a growing interest in the field of artificial intelligence [2]. Neu-
ral networks have been successfully used for a wide variety of
chemical engineering applications, such as detections and loca-
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Nomenclature

Aj the output of the jth layer of the network (j =
0, N)

AN the output of the neural network
AT heat transfer area (m2)
A1, A2 preexponential factors in Arhenius equation
C discrete state space matrix used in linear models
Cheat,ag heat capacity of cooling agent (J g−1 K−1)
Cheat, r heat capacity of mass of reaction (J g−1 K−1)
cj concentration of ion j (j = Na, Ca, Mg, Cl, CO3,

etc.)
cO2 oxygen concentration in the liquid phase (mg/l)
c∗

O2
equilibrium concentration of oxygen in the liquid
phase (mg/l)

c∗
O2,0 equilibrium concentration of oxygen in distilled

water (mg/l)
cp product (ethanol) concentration (g/l)
cS substrate (glucose) concentration (g/l)
cS, in glucose concentration in the feed flow (g/l)
cX biomass (yeast) concentration (g/l)
D output data from the training set
E sum squared error of the network
Ea1, Ea2 apparent activation energy for the growth, respec-

tively, denaturation reaction
Fag flow of cooling agent (l h−1)
Fe outlet flow from the reactor (l h−1)
Fi flow of substrate entering the reactor (l h−1)
Fj transfer function of the jth layer of the net (j =

0, N)
h number of learning epoch
H Gauss–Newton Hessian of the unregularized error

criterion in the OBS algorithm
H̃ Gauss–Newton Hessian of the regularized error

criterion in the OBS algorithm
Hi specific ionic constant of ion i (i = Na, Ca, Mg,

Cl, CO3, etc.)
I input data from the training set
Ii ionic strength of ion i (i = Na, Ca, Mg, Cl, CO3,

etc.)
Ij jth unit vector
k discrete time
(kla) product of mass-transfer coefficient for oxygen

and gas-phase specific area (h−1)
(kla)0 product of mass-transfer coefficient at 20 ◦C for

O2 and gas-phase specific area (h−1)
KO2 constant of oxygen consumption (g/l)
KP constant of growth inhibition by ethanol (g/l)
KP1 constant of fermentation inhibition by ethanol

(g/l)
KS constant in the substrate term for growth (g/l)
KS1 constant in the substrate term for ethanol produc-

tion (g/l)
KT heat transfer coefficient (J h−1 m−2 K−1)
lr learning rate

m momentum parameter used in the learning algo-
rithm (0.95)

mi quantity of inorganic salt i (i = NaCl, CaCO3,
MgCl2) (g)

Mi molecular/atomic mass of salt/ion i (g/mol)
n(i, j)(h) weighting factor from the ith input variable to the

jth output variable in the hth learning epoch
N number of layers in the neural network (input

layer is not counted)
P prediction horizon
Q number of sets of training input–output data
Qr regularization matrix
rO2 rate of oxygen consumption (mg l−1 h−1)
R universal gas constant (8.31 J mol−1 K−1)
RSP ratio of ethanol produced per glucose consumed

for fermentation
RSX ratio of cell produced per glucose consumed for

growth
Sj number of neurons in the jth layer (j = 0, N)
t time (h)
Tag temperature of cooling agent in the jacket (◦C)
Tin temperature of the substrate flow entering to the

reactor (◦C)
Tin,ag temperature of cooling agent entering to the jacket

(◦C)
Tr temperature in the reactor (◦C)
Tsp setpoint temperature (◦C)
U vector of the manipulated variables in linear mod-

els
V volume of the mass of reaction (l)
Vj volume of the jacket (l)
X state vector in linear models
Y output vector in linear models
YO2 yield factor for biomass on oxygen (mg/mg),

defined as the amount of oxygen consumed per
unit biomass produced

z ionic charge of ion i

Greek symbols
δw(i, j)(h) variation of the weighting factor in the hth

learning epoch
"Hr reaction heat of fermentation (kJ/mol O2 con-

sumed)
Φ, Γ discrete state space matrices used in linear models
λj Lagrange multipliers
µO2 maximum specific oxygen consumption rate

(h−1)
µP maximum specific fermentation rate (h−1)
µX maximum specific growth rate (h−1)
θ* vector with all weights and biases of the reduced

network
ρag density of cooling agent (g/l)
ρr density of the mass of reaction (g/l)
ξj saliency for weight j corresponding to the ANN

structure
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tions of gross errors in process systems [3], fault detection in
control systems [4] and optimal design of chemical processes
[5]. ANNs were successfully used in many applications as non-
linear input–output maps for process data, in the identification
and modeling of linear and nonlinear systems [6–8], and in
various process control [9–11], and pattern recognition [12,13]
applications. Besides the above-mentioned contributions, which
mainly focus on the applications of neural networks, there has
been a recent increase in the number of studies concerning the
control-relevant properties of neural networks [14], as well as
the improvement of network training by using different network
structures, transfer functions and learning algorithms [6,15–17].
The performance of the neural network model strongly depends
on its structure. Besides the aforementioned papers focusing on
the applications of ANNs or the training of ANNs, there has
been a recent increase in the number of studies concerning the
improvement of network training and prediction by determining
the optimal network topology [18].

Chemical processes in general, and biochemical fermen-
tation systems in particular have strongly nonlinear features.
Additionally, biochemical process models have a large num-
ber of parameters, which have to be determined experimentally
[19,20]. Due to these features, on one hand the linear model
approach is not appropriate for such processes, and on the other
hand an accurate analytical model development can be very ardu-
ous. Consequently, neural networks represent a helpful tool in
biochemical process modeling and control [21].

In this paper a detailed analytical model for a continuous fer-
mentation reactor is presented first, which incorporates various
nonlinear characteristics of the process, such as the oxygen mass
transfer, detailed energy balance, complex reaction kinetics, the
temperature dependence of the kinetic parameters as well as the
effect of ionic strength and temperature on the mass transfer
coefficient of oxygen. This is the first time when such a compre-
hensive yet control relevant model is derived for the fermentation
bioreactor, which can be used as a process simulator to analyze
or optimize the dynamic behavior of the system or for the design
and evaluation of other control strategies.

The model is used in this work to simulate the real process
and to generate the training data required for the neural network
based empirical models. Neural networks with optimal structure
were designed to model the dynamics of the process. It is well
accepted that the prediction capability of the ANN based model
highly depends on the number of neurons/connections used in
its structure. Although an ANN with sufficiently large number
of connections can learn any input–output data dependency, if
the number of connections is too high the so called over-fitting
phenomena occurs, characterized by a very low prediction qual-
ity. For the determination of the optimal network topology a
novel pruning approach is proposed, which is based on a sys-
tematic optimal brain surgeon algorithm. The ANN model with
the optimal structure is used then in the MPC algorithm as the
internal model for prediction of the control movements. The
performances of the Neural Network Model based Predictive
Control (NNMPC) of the reactor temperature for the setpoint
change were compared with those obtained with LMPC and
proportional-integral-derivative (PID) control. The robustness

Fig. 1. An individual processing element of a neural net.

of the NNMPC against noisy temperature measurement is also
evaluated. Results using Inverse Neural Network Model based
Predictive Control (INNMPC) of the process are also presented.
The paper provides the first comprehensive simulation study of
the application of an optimally designed neural network model
based predictive control algorithm to a fermentation bioreactor.

2. Artificial neural networks

A neural network is a computer program architecture for
nonlinear computations, which is composed of many simple ele-
ments operating in parallel. These elements, called processing
elements, are inspired by biological nervous systems, and they
are highly interconnected. An individual processing element
(neuron) can have any number of inputs, but only one output
that is generally related to the inputs by a transfer function. The
most frequently used transfer functions are: sigmoid function,
hyperbolic tangent function, sine function, linear and saturated
linear transfer function. The argument of the transfer function is
the sum of the input elements of the corresponding neuron, each
input being multiplied by the associated weight, which shows
the strength of the connection between two neurons. A neuron
usually has an additional input, called bias, which is much like
a weight corresponding to a constant input of 1. Fig. 1 shows
a schematic representation of an individual processing element
(neuron).

The neurons are typically grouped into subsets, called lay-
ers, in which usually all the process units have the same bias
and transfer function. Among the various architectures proposed
for neural networks, the multilayer, feedforward network with
Backpropagation Learning algorithm (BPN) has been used most
frequently for dynamic modeling and process control appli-
cations. A typical feedforward neural network has one input
layer (usually with the identity transfer function; thus it only

Fig. 2. The structure of a generic feedforward neural network.
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distributes the inputs to the neurons from the next layer), one
output layer and one or more hidden layers. The structure of a
general feedforward neural network is presented in Fig. 2.

The outputs of the neurons from a layer represents the inputs
for the next layer. The architecture of a network consists of a
description of how many layers the network has, the number of

neurons in each layer, the transfer function used in each layer
and how the layers are connected to each other.

The most frequently used learning algorithm to train feed-
forward networks is the backpropagation learning algorithm.
During the training phase the connection weights and biases are
modified, using the backpropagation learning rules, so that the
network will learn the process features.

The backpropagation learning algorithms belong to the
class of supervised training algorithms, i.e., there is a set of
input–output data, which is repeatedly presented to the network
when the weights are adjusted in order to minimize the error
between the net output (AN) and the desired training output (D).
The more the number of sets of input–output data (Q), the bet-
ter the network will learn the process. Hence, for a network the
training data can be represented by the following matrices:

P =

⎡

⎢⎢⎢⎣

P(1, 1) P(1, 2) · · · P(1, Q)

P(2, 1) P(2, 2) · · · P(2, Q)

:

P(S0, 1) P(S0, 2) · · · P(S0, Q)

⎤

⎥⎥⎥⎦
(1)

P =

⎡

⎢⎢⎢⎣

D(1, 1) D(1, 2) · · · D(1, Q)

D(2, 1) D(2, 2) · · · D(2, Q)

:

D(SN, 1) D(SN, 2) · · · D(SN, Q)

⎤

⎥⎥⎥⎦
(2)

The backpropagation algorithm can be summarized as follows:

• initialization of the weight coefficients with random values;
do
for (each training input–output pair)

• the input array is presented to the network and the activation
flux is propagated layer by layer through the net (forward
step);

• an error criterion is calculated and it is propagated back
through the net adjusting the weights in order to minimize
the error criterion (backward step).

while (error is above the error goal).

2.1. Forward step

In this step the output of the net is calculated. For a feedfor-
ward network with N layers (the input layer is not counted), with
Sj neurons in the jth layer and with the same transfer function
(Fj) in one layer the output of the jth layer can be computed with
the following matrix with recurrent terms:

Aj =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

Fj

(
Sj−1∑

i=1

wj(1, i)Aj−1(i, 1) + Bj(1)

)
· · · Fj

(
Sj−1∑

i=1

wj(1, i)Aj−1(i, Q) + Bj(1)

)

: : :

Fj

(
Sj−1∑

i=1

wj(Sj, i)Aj−1(i, 1) + Bj(Sj)

)
· · · Fj

(
Sj−1∑

i=1

wj(Sj, i)Aj−1(i, Q) + Bj(Sj)

)

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

(3)

with F0 = ℑ (identity function: ℑ(x) = x) and A0 = P. For j = N the
output of the network is obtained. The transfer function used in
our work was the sigmoid function:

σ(x) = 1
1 + e−x

(4)

2.2. Backward step

The most frequently used error criterion, calculated in this
step is the sum squared error of the network, defined as:

E =
SN∑

i=1

Q∑

j=1

(D(i, j) − AN (i, j))2 (5)

The adjustment of the network weights and biases is done by
continuously changing their values in the direction of steepest
descent with respect to error. There are several improved meth-
ods to perform this step more efficiently. One of these algorithms
is the backpropagation learning with momentum [22]. Momen-
tum allows the network to ignore shallow local minimums in
the error surface. Momentum (m) can be added to backpropaga-
tion learning by making weight changes equal to the sum of a
fraction of the last weight change and the new change suggested
by the backpropagation rule. This is expressed mathematically
below:

w(i, j)(h) = w(i, j)(h−1) + lr δw(i, j)(h) (6)

where

δw(i, j)(h) = m δw(i, j)(h−1) + (1 − m)
∂E

∂w(i, j)
(7)

These two steps (forward and backward) are repeated until the
sum squared error (E) becomes less then the error goal.

3. First principle model of the continuous fermentation
bioreactor

Alcoholic fermentation is one of the most important bio-
chemical processes. The attention directed to this process has
increased for the last two decades because its product, the
ethanol, could represent an alternative energy source being used
as a partial substitute for gasoline as a fuel. There are numerous
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Fig. 3. The continuous fermentation reactor.

models of this process based on different kinetic considera-
tions [23–25]. However, most of these models focus only on the
kinetics of the process. The model presented below, used in sim-
ulations, besides the detailed kinetic model, involves equations,
which express the heat transfer, the dependence of kinetic param-
eters on temperature, the mass transfer of oxygen, as well as the
influence of temperature and ionic strength on the mass transfer
coefficient. The kinetic equations used in the presented bioreac-
tor model are modifications of the Monod equations based on
the Michaelis–Menten kinetics, proposed by Aiba et al. [26]:

dcX

dt
= µXcX

cS

KS + cS
e−KPcP (8)

dcP

dt
= µPcX

cS

KS1 + cS
e−KP1cP (9)

dcS

dt
= − 1

RSX

dcX

dt
− 1

RSP

dcP

dt
(10)

where RSX and RSP are yield factors defined as the ratios of
cell and ethanol produced per the corresponding amount of glu-
cose used for growth or ethanol production, respectively. These
equations express the production or consumption of the main
components taking into account the inhibitory effect of ethanol.
The continuous fermentation reactor is shown schematically in
Fig. 3.

The reactor is modeled as a continuous stirred tank with con-
stant substrate feed flow. There is also a constant outlet flow
from the reactor that contains the product, substrate as well
as biomass. The reactor contains three distinct main compo-
nents: (i) the biomass, which is a suspension of yeast fed into
the system and evacuated continuously, (ii) the substrate, which
is solution of glucose, which feeds the micro-organism (Sac-
charomyces cerevisiae) and (iii) the product (ethanol), which is
evacuated together with the other components. In order to have
a quasi steady-state regarding the biomass, a low dilution rate
(Fe/V) is necessary, that is, the dilution rate must not exceed
the biomass production rate. Consequently, the process has a
very slow dynamics. Together with the yeast, inorganic salts
are added. These are necessary compounds for the formation of
coenzymes. The inorganic salts due to the “salting-out” effect
have also strong influence upon the equilibrium concentration
of oxygen in the liquid phase. This influence of the dissolved

inorganic salts as well as that of the temperature upon the equi-
librium concentration of oxygen in the liquid phase are modeled
in detail by Eqs. (11)–(29).

The mathematical model of the system is presented below:
The initial data of the system are:

- inorganic salts in the reaction medium:

mNaCl = 500 g

mCaCO3 = 100 g

mMgCl2 = 100 g

- the pH of the liquid phase:

pH = 6

- the inputs of the system:

Fi = Fe = 51 l h−1

Tin = Fe = 25 ◦C

cS,in = 60 g/l

Tin,ag = 15 ◦C

Molar concentrations of ions in the reaction medium are cal-
culated as follows, taking into account that the ion of Cl− is
present in two salts (NaCl and MgCl2):

cNa = mNaCl

MNaCl

MNa

V
(11)

cCa = mCaCO3

MCaCO3

MCa

V
(12)

cMg =
mMgCl2

MMgCl2

MMg

V
(13)

cCl =
[

mNaCl

MNaCl
+ 2

mMgCl2

MMgCl2

]
MCl

V
(14)

cCO3 = mCaCO3

MCaCO3

MCO3

V
(15)

cH = 10−pH (16)

cOH = 10−(14−pH) (17)

The ionic strength of the ion i is calculated using Eq. (18):

Ii = 1
2ciz

2
i (18)

INa = 0.5cNa(1)2 (19)

ICa = 0.5cCa(2)2 (20)

IMg = 0.5cMg(2)2 (21)
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Table 1
Parameters of the process model

A1 = 9.5 × 108 HCl = 0.844 RSP = 0.435
A2 = 2.55 × 1033 HCO3 = 0.485 RSX = 0.607
AT = 1 m2 HHO = 0.941 V = 1000 l
Cheat,ag = 4.18 J g−1 K−1 (kla)0 = 38 h−1 Vj = 50 l
Cheat,r = 4.18 J g−1 K−1 KO2 = 8.86 mg/l YO2 = 0.970 mg/mg
Ea1 = 55,000 J/mol KP = 0.139 g/l "Hr = 518 kJ/mol O2

Ea2 = 220,000 J/mol KP1 = 0.070 g/l µO2 = 0.5 h−1

HNa = −0.550 KS = 1.030 g/l µP = 1.790 h−1

HCa = −0.303 KS1 = 1.680 g/l ρag = 1000 g/l
HMg = −0.314 KT = 3.6 × 105 J h−1 m−2 K−1 ρr = 1080 g/l
HH = −0.774

ICl = 0.5cCa(−1)2 (22)

ICO3 = 0.5cCO3(−2)2 (23)

IH = 0.5cH(1)2 (24)

IOH = 0.5cOH(−1)2 (25)

The global effect of the ionic strengths is given by Eq. (26):
∑

HiIi = HNaINa + HCaICa + HMgIMg + HClICl

+· · · + HCO3ICO3 + HHIH + HOHIOH (26)

The dependence of the equilibrium concentration of oxygen
with temperature in distilled water is given by the below empir-
ical equation obtained from the experimental data presented by
Sevella [27]:

c∗
O2,0 = 14.6 − 0.3943Tr + 0.007714T 2

r − 0.0000646T 3
r (27)

Due to the fact that salts are dissolved in the medium the
equilibrium concentration of oxygen in liquid phase is obtained
from the following Setchenov type equation:

c∗
O2

= c∗
O2,0 × 10−

∑
HiIi (28)

Mass transfer coefficient for oxygen as temperature function
is given by the following empirical equation [27]:

(kla) = (kla)0(1.024)Tr−20 (29)

The rate of oxygen consumption is:

rO2 = µO2

1
YO2

cX
cO2

KO2 + cO2

(30)

The expression of the maximum specific growth rate (Eq.
(31)) involves the resultant of the growth rate that increases with
the temperature and the effect of the heat denaturation:

µX = A1e−(Ea1/R(Tr+273)) − A2e−(Ea2/R(Tr+273)) (31)

The balance for the total volume of the reaction medium is:

dV

dt
= Fi − Fe (32)

The mass balances for the biomass, product, substrate and
dissolved oxygen are expressed by Eqs. (33)–(36):

dcX

dt
= µXcX

cS

KS + cS
e−Kpcp − Fe

V
cX (33)

dcp

dt
= µPcX

cS

KS1 + cS
e−KP1cP − Fe

V
cP (34)

The first terms in Eqs. (33) and (34) represent the quantity
of biomass and product, respectively, produced in the fermenta-
tion reactions. The last terms describe the amount of yeast and
ethanol, respectively, leaving the reactor.

dcS

dt
= − 1

RSX
µXcX

cS

KS + cS
e−KPcP − 1

RSP
µPcX

cS

KS1 + cS

× e−KP1cP + Fi

V
cS,in − Fe

V
cS (35)

The first and second terms in Eq. (35) represent the amount
of substrate consumed by the biomass for growth and ethanol
production, respectively. The third term is the quantity of glucose
entering the reactor with the fresh substrate feed, while the last
term is the quantity of glucose leaving the reactor.

The concentration of the dissolved oxygen in the reaction
medium is the resultant of the quantity of oxygen entering in the
reaction medium due to the mass transfer, expressed by the first
term in Eq. (36), and the amount consumed in the fermentation
reactions (last term):

dcO2

dt
= (kla)(c∗

O2
− cO2 ) − rO2 (36)

The energy balances for the reactor and jacket are given by
Eqs. (37) and (38), respectively.

dTr

dt
= Fi

V
(Tin + 273) − Fe

V
(Tr + 273) + rO2"Hr

32ρrCheat,r

+KT AT (Tr − Tag)
VρrCheat,r

(37)

dTag

dt
= Fag

Vj
(Tin,ag − Tag) + KT AT (Tr − Tag)

VjρagCheat,ag
(38)
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Fig. 4. Dynamic response of the system in the case of step change in the input substrate concentration (40 → 60 g/l).

The parameters of the model are presented in Table 1
[28].

The above-described model was used for the study of the
dynamic behavior of the bioreactor in the case of different dis-

turbances. The disturbances considered were: step change in the
inlet flow temperature and in the substrate concentration. The
first disturbance can occur due to the ambient temperature vari-
ation, while the second one because of quality changes of the

Fig. 5. Dynamic response of the system in the case of step change in the temperature of input flow (25 → 23 ◦C).
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substrate flow. The model was implemented as a MATLAB S-
function and the simulator is available upon request from the
author.

The dynamic behavior of the system for the disturbances stud-
ied is shown in Figs. 4 and 5.

These figures show that variations in the input concentration
have no significant effects on the ethanol concentration, there-
fore will not be considered as an important disturbance in this
study. According to Fig. 5 the effect of the change in the inlet
temperature is much more significant. A step of only 2 ◦C causes
an important variation of the ethanol concentration.

The presented model can be a useful tool to test various con-
trol methods. In this work two artificial neural network model
based NMPC control techniques are presented andassessed in
comparison to PID and linear model based control.

4. Linear model identification of bioreactor

In order to evaluate, how well the linear approximation
describes the process, two linear models were identified based on
the simulated data obtained from the analytical model described
in the previous section:

(1) Linear state space model, expressed by the equations below:

X(k + 1) = ΦX(k) + ΓU(k), Y (k) = CX(k) (39)

where Φ, Γ and C are discrete state space matrices for the
corresponding sampling time, X(k) the state vector, Y(k) the
output vector of the linear model and U(k) is the vector of the
manipulated variables at moment k. With this model the pro-
cess nonlinearity is demonstrated by the simulation results
presented in Fig. 6. The procedure of obtaining the plotted
data in Fig. 6 was the following: at the steady-state operat-
ing point (where Fag = 18 l h−1 and Tr ∼= 30 ◦C) a sequence
of step inputs ("Fag) was given. The changes in output
("Tr) after one sampling period are plotted showing the
clear difference between the nonlinear model (represented
by circles) and the linearized one (solid line).

Fig. 6. Process nonlinearity. The solid line indicates the temperature changes
for a linear approximation of the process.

Fig. 7. OE linear model prediction.

(2) Output-Error (OE) model, from the polynomial linear
model category was also identified using the simulated
input–output data pairs:

y(k) = −f1(y(k − 1) − e(k − 1)) − f2(y(k − 2)

−e(k − 2)) − · · · − fnf (y(k − nf ) − e(k − nf ))

+· · · + b1u(k − nk) + b2u(k − nk − 1)

+· · · + bnbu(k − nk − nb + 1) + e(k) (40)

where f1, f2, . . ., fnf, b1, b2, . . ., bnb, are the coefficients of the
model. The structure of the model is defined by giving the
time delay nk, and the order of the polynomials nf and nb,
respectively. In order to assure a sufficient complexity of the
model, a structure with parameters nk = 1, nf = nb = 4, was
identified. Fig. 7 shows that the obtained linear model is not
able to model accurately the process. Although the overall
dynamic characteristics are captured, and a proper feedback
model/plant correction can be used to minimize modeling
errors proper nonlinear model is needed for accurate control
as it will be shown in the following sections.

5. Artificial Neural Network based dynamic model and
control of the bioreactor

5.1. Identification of the ANN model of the bioreactor

In this part of the work the primary goal was to obtain a
dynamic ANN model, which describes the variations of the reac-
tor temperature (y) as a function of the cooling agent flow (u).
For this, a random input signal was generated and applied to
the system. The simulated response of the system together with
the random input signal was used to train the ANN. Once the
ANN model is identified, it can be used as an internal model in
an advanced nonlinear model predictive control algorithm. For
this, it is crucial to have a network with very good generaliza-
tion properties. One way to obtain a network with appropriate
generalization properties is to choose a structure with sufficient
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Fig. 8. The initial structure of the ANN.

number of parameters, which assure that the ANN learns the
training data and then optimize the topology of the network until
the best generalization properties are achieved. A feedforward
neural network, with the same nk, nf and nb parameters as in the
case of the linear OE model was chosen. Thus, in the input layer
the network has 8 neurones and 1 neurone in the output layer,
with linear transfer function. One hidden layer with 14 neurones
with the hyperbolic tangent sigmoid transfer function was used.
The fully connected initial network is presented in Fig. 8. Fig. 9
shows the input–output data sequence that was used for training
the network. Figs. 10 and 11 demonstrate that the network was
able to learn the training data with a very good accuracy.

In order to test the ANN capability of generalization, other
random input sequence was obtained by simulation, from the
first principle model of the system. The test data set is presented
in Fig. 12. Figs. 13 and 14 demonstrate the very poor general-
ization performance of the ANN model. In this case very high
prediction errors were obtained. By comparing the plots for
training and test set, it is quite obvious that the reason of the
poor generalization is the overfitting of the data. It is concluded
therefore that the model structure selected contains too many
neurons (weights). Consequently, for improving the generaliza-
tion performance of the ANN model, it is necessary to remove
the superfluous weights from the network.

Fig. 9. The training data.

Fig. 10. ANN prediction and prediction error for the training data.

5.2. Determination of optimal topology of the ANN

One of the most important parameters of the ANN is the
number of connections among the neurons. As it can be seen
on the simulation results presented in the previous section, this
parameter determines the learning and especially the general-
ization performances of the ANN. The so-called Optimal Brain
Surgeon (OBS) is one of the most important strategy for pruning
neural networks. This algorithm determines the optimal network
architecture by removing the superfluous weights from the net-
work in order to avoid the overfitting of the data by the ANN. A
variant of the OBS algorithm proposed by Hansen and Pedersen

Fig. 11. Histogram of prediction errors for the training data.
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Fig. 12. Data set to test the ANN model.

Fig. 13. ANN prediction and prediction error for the testing data.

Fig. 14. Histogram of prediction errors for the testing data.

[29] was developed and implemented with the modification to
take into account that it should not be possible to have networks
where a hidden unit has lost all the weights leading to it, while
there still are weights connecting it to the output layer, or vice
versa.

In this algorithm a saliency is defined as the estimated
increase of the unregularized error criterion, when a weight is
eliminated. The saliency for weight j is defined by:

ξj = λjI
T
j H̃−1(θ∗)

1
N

Qrθ
∗ + 1

2
λ2

jI
T
j H̃−1(θ∗)H(θ∗)H̃−1(θ∗)Ij

(41)

where θ* is a vector with all the weights and biases of the reduced
network and Ij is the jth unit vector. The Gauss–Newton Hessian
of the regularized criterion is calculated with the equation:

H̃(θ∗) = H(θ∗) + 1
N

Qr (42)

where H is the Hessian of the unregularized error criterion, and
Qr is the regularization matrix. The Lagrange multipliers λj are
calculated from the following equation:

λj =
θ∗
j

H̃−1
j,j (θ∗)

(43)

The constrained minimum (the minimum when weight j is 0) is
then found from:

δθ = θ∗ − θ = −λjH̃
−1(θ∗)Ij (44)

In the beginning, the saliencies are calculated and the weights
are pruned as described above. However, when a situation occurs
where a unit has only one weight leading to or one weight lead-
ing from it, the saliency for removing the entire unit is calculated
instead, by setting all weights connected to the unit to zero. With
the proposed enhanced OBS algorithm the computational time
necessary to obtain the optimal topology was reduced in some

Fig. 15. Results of pruning the ANN with OBS.
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Fig. 16. The architecture of the optimal ANN (with 53 weights) obtained by the
OBS algorithm.

cases with 30%. The network can be retrained after each weight
elimination or after a certain percent of the weights was elimi-
nated. The error criterion used by the algorithm is calculated for
the test data set. This algorithm was implemented in MATLAB
and successfully applied to the above-obtained ANN models.

The fully connected feedforward ANN, used in our simula-
tions, contains a total number of 141 parameters (weights and
biases). The OBS algorithm was used in order to prune the net-
work. After each weight elimination the network was retrained
for 50 iterations. Fig. 15 presents the results obtained by the
OBS algorithm. In this figure the error criteria for both the train-
ing data and testing data together with the final prediction error
(FPE) is presented. The FPE is estimated from the training set
and is very useful when a test set is not available. The test error
is the most reliable estimate of the generalization error; there-
fore, the OBS algorithm selects the network with the smallest
test error. The OBS algorithm gave as the final network the one
with 53 weights (a reduction with 88 weights, i.e., 62%). The
architecture of the selected network is presented in Fig. 16. A
considerable reduction of the network structure was achieved.
The number of the weights was reduced with 62%. Three of the

Fig. 17. Generalization performances of the reduced ANN (with 53 weights).

Fig. 18. Histogram of prediction errors for the testing data (ANN with 53
weights).

neurons from the hidden layer were completely eliminated. The
performances on the testing data (Figs. 17 and 18), obtained with
the reduced ANN are significantly better than in the case of the
original structure.

Studying further the results obtained with the OBS algorithm,
presented in Fig. 15, one can observe that the network with the
second best test error has a much simpler architecture (only 16
weights). The test error is very close to the value obtained with
the ANN with 53 weights, but the topology is reduced addition-
ally with 37 weights. The structure of this ANN is presented in
Fig. 19. This network suffered a considerably simplification of
its structure. A number of 125 weights were removed from the
total number of 141 weights (a reduction of 88%). From the input

Fig. 19. The architecture of the ANN with 16 weights.
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Fig. 20. Generalization performances of the reduced ANN (with 16 weights).

layer 3, and from the hidden layer 7 neurons were eliminated
completely. This structure shows that for an accurate modeling
of the dynamic behavior of the system it is not necessary to use
the output measurements with 1 and 3 steps in the past and the
input value with 3 sampling time in the past.

Despite the considerable reduction of the complexity of the
network structure this simple structure has very good general-
ization properties, as can be seen in Fig. 20. The simple structure
also facilitates the fast data processing. Consequently, the pruned
networks can be used in different nonlinear model predictive or
optimal control algorithms as the internal model for prediction.

5.3. ANN model based nonlinear predictive control of the
bioreactor

Once the ANN model is identified and the structure with the
best generalization properties is selected, it can be used in dif-
ferent NMPC algorithms. In NMPC usually multi-step-ahead
prediction is needed to foresee the behavior of the process in
advance in the future. An ANN model with one-step-ahead pre-
diction can be used repeatedly or another structure with more
then one future output parameter in the output layer can be iden-
tified. The latter one has the advantage of faster computation
of the predicted values but in this case the prediction horizon
usually is fixed when the network structure is chosen and for
different prediction horizons different networks with different
structures have to be trained.

The network with the optimal topology (Fig. 16) was intro-
duced in a model predictive control scheme as the internal model
used for prediction during the control movement calculation.
The neural network model based predictive control structure is
presented in Fig. 21.

In each sampling period the current temperature measure-
ment is obtained (Tr(k)), and considering that the past temper-

Fig. 21. Block diagram of NNMPC of the process.

ature measurements and control actions are known, the next
control action is calculated by solving an optimization problem.
The next control action is selected such that the predicted out-
come of the control action is optimum in the sense of minimizing
the square of the deviation from the setpoint trajectory over a
finite horizon (P). Prediction over the horizon P is achieved by
repeatedly applying the ANN model. Consequently, the opti-
mization problem for this particular case can be formulated as
follows:

min
Fag(k)

{
P∑

i=1

[Tr(k + i) − Tsp(k + i)]2

}
(45)

where:

Tr(k + i)|i=1,P = fNN (Fag(k), Fag(k − 1), Fag(k − 2), Tr(k),

× Tr(k − 1), Tr(k − 2)) (46)

With this control structure, an excellent control of the process
was achieved. Here a control horizon P = 4 was used. For com-
parison the PID and LMPC control of the process are also
presented in Fig. 22. The superiority of NNMPC can be clearly
seen.

The robustness of the NNMPC structure was studied in the
case of noisy temperature measurement. The amplitude of the
white noise considered in the simulation was 1.5 ◦C. To make
the network capable of controlling the process in the case of
noisy temperature measurement, the ANN model was trained
including noisy data into the training set. If I and D are the
training input and output, respectively, obtained from the ana-
lytical model of the process, the training set for training the net
with noise can be constructed as follows:

-input data : I∗ = [P P + noise] (47)

-corresponding target data : D∗ = [D D]∗ (48)

Once the network had been trained with these training data it was
used in the above-described NNMPC scheme. The scenario con-
sidered in this study is the case when the measurement is subject
to high frequency noise (e.g., due to magnetic fields that would
affect the temperature sensor, or variations in the hydrodynamics
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Fig. 22. Simulation results with ANMPC, LMPC and PID control of the process.

in the reactor due to nonideal agitation). In this case a lowpass fil-
ter could be used to obtain the non-noisy measurements required
for the training of the network. The results obtained in the case
of noisy temperature measurement are shown in Fig. 23. It can
be seen that a fairly good control was achieved. In this case, PID

Fig. 23. NNMPC of the process with noisy temperature measurement.

Fig. 24. Block diagram of inverse-ANN based control of the process.

control gave worse results than NNMPC and LMPC fails for all
filter designs tried.

As an alternative way to use neural networks for process
control, the use of an inverse neural network model was also
considered. In the case of inverse neural network models, the
outputs of the network correspond to the future values of the
process inputs while the input layer of the net contains, besides
the past values of the process inputs and outputs, and the current
process output measurement, also the future values of controlled
variables (process outputs). The inverse neural network due to its
structure eliminates the optimization algorithm from the control
movement computation. Using the past values of the controlled
and manipulated variables as well as the current measurement,
the control movement can be directly obtained from the net when
the setpoint values are presented to the network as the future val-
ues of the controlled variables. The block diagram of the inverse
neural network model based predictive control (INNMPC) of
the process is presented in Fig. 24.

The network used in these simulations had two hidden layers
(with 7 and 5 neurons, respectively), 10 neurons in the input
layer and 4 neurons in the output layer. The ANN model can be
represented as follows:

[Fag(k), Fag(k + 1), Fag(k + 2), Fag(k + 3)]

= finvNN (Tr(k + 3), Tr(k + 2) , Tr(k + 1), . . . ,

Tr(k), Tr(k − 1), Tr(k − 2), Tr(k − 3), Fag(k − 1),

Fag(k − 2), Fag(k − 3)) (49)

The network was trained using a historical database obtained
from the analytical model. In the training phase the future values
of the temperature (Tr(k + i)) are known. After the network had
been trained, it was used for control, when in each sampling
time, for the future temperature inputs of the network the setpoint
values were used:

Tr(k + i)|i=1,3 = Tsp(k + i)|i=1,3 (50)

Fig. 25 shows that a very good control performance was achieved
with this control structure. Note that both control algorithms
are designed for setpoint tracking therefore the current formu-
lation would result in a bias in the controlled output in the case
of unmeasured disturbances. However, the bias can be easily
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Fig. 25. Inverse-NNMPC of the process.

eliminated with a simple error feedback loop in the control archi-
tecture, that would provide the necessary integral action to the
controller.

6. Conclusions

The paper successfully demonstrates the ability of artifi-
cial neural networks to model complex nonlinear biochemi-
cal processes, such as the alcoholic fermentation. The detailed
analytical model of the continuous fermentation bioreactor is
presented. This model is more complex than those used gen-
erally to test different control systems involving more nonlin-
ear characteristics of the process. Therefore it can be a useful
tool to test various nonlinear control methods. Using the data
obtained from the analytical model, artificial neural network
based models were also developed. An efficient new algorithm,
the enhanced Optimal Brain Surgeon, is also presented as a
pruning algorithm for the determination of the optimal ANN
topology. With the OBS algorithm a reduction of the number
of weights from 141 to 53 (62%) in the first step, and finally
to 16 (88%) was achieved. Simulation results are presented to
demonstrate that this very simple network structure can achieve
a better generalization than the initial, fully connected structure.
The pruned networks have very good generalization properties.
The simple structure also facilitates the fast data processing.
Therefore, the pruned networks can be used in different nonlin-
ear model predictive algorithms as the internal model used for
prediction.

Two ANN model based control schemes are presented and
tested via simulations. The results were compared with those
obtained with linear MPC and PID control. The superiority of
the NNMPC structure was demonstrated. The main advantage
of the NNMPC compared with the NMPC, which uses the ana-
lytical model of the system, is that the former does not need
detailed knowledge about the process, which is a feature that
might be of crucial importance in the case of complex bio-
chemical processes. The nonlinear model used in the NNMPC
can be obtained from experimental input–output data without

the modeling burden required by the derivation of the analyt-
ical model. The simulations presented also demonstrate how
neural networks can be trained and used for nonlinear model
predictive control of a process when measurements are affected
by noise. Additionally, the development and application of a
predictive control scheme based on the inverse neural network
model of the process is also illustrated. The main advantage
of this control structure is that it needs a very simple mathe-
matical apparatus for the control movement calculation. This
algorithm is no longer iterative thus the required computa-
tional time is very short, making it preferable for real-time
applications.
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