Please wait a minute...
Frontiers of Agriculture in China

ISSN 1673-7334

ISSN 1673-744X(Online)

CN 11-5729/S

Front. Agric. China    2008, Vol. 2 Issue (3) : 290-295    https://doi.org/10.1007/s11703-008-0058-7
Relationships of soil physical and microbial properties with nitrous oxide emission affected by freeze-thaw event
WANG Lianfeng1, SUN Xin2, CAI Yanjiang2, XIE Hongtu3, ZHANG Xudong3
1.College of Environmental and Chemical Engineering, Dalian Jiaotong University; Key Laboratory of Terrestrial Ecological Process, Institute of Applied Ecology, Chinese Academy of Sciences; 2.College of Environmental and Chemical Engineering, Dalian Jiaotong University; 3.Key Laboratory of Terrestrial Ecological Process, Institute of Applied Ecology, Chinese Academy of Sciences
 Download: PDF(86 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Freeze-thaw event often occurs in regions at mid-high latitude and high altitude. This event can affect soil physical and biological properties, such as soil water status, aggregate stability, and microbial biomass and community structure. Under its effects, the bio-indicators of soil microbes including the kinds and quantities of some specific amino sugars may vary, and the process and intensity of soil nitrogen transformation may change, which can result in an increase in nitrous oxide (N2O) production and emission, making the soil as the major source of N2O emission. This paper summarizes the research progress on the aspects mentioned above, and suggests further research directions on the theoretical problems of soil N2O production and emission under the effects of freeze-thaw event.
Issue Date: 05 September 2008
 Cite this article:   
WANG Lianfeng,SUN Xin,CAI Yanjiang, et al. Relationships of soil physical and microbial properties with nitrous oxide emission affected by freeze-thaw event[J]. Front. Agric. China, 2008, 2(3): 290-295.
 URL:  
https://academic.hep.com.cn/fag/EN/10.1007/s11703-008-0058-7
https://academic.hep.com.cn/fag/EN/Y2008/V2/I3/290
1 Berg P, Klemedtsson L, Rosswall T (1982). Inhibitory effects of low partialpressures of acetylene on nitrification. Soil Biology and Biochemistry, 14(3): 301–303.
doi:10.1016/0038‐0717(82)90041‐4
2 Bond-Lamberty B, Wang C K, Gower S T (2005). Spatiotemporal measurement and modelingof stand-level boreal forest soil temperatures. Agricultural and Forest Meteorology, 131(1): 27–40.
doi:10.1016/j.agrformet.2005.04.008
3 Brooks P D, Schmidt S K, Williams M W (1997). Winter production of CO2 and N2O from alpine tundra:environmental controls and relationship to inter-system C and N fluxes. Oecologia, 110(3): 403–413
4 Brooks P D, Williams M W, Schmidt S K (1998). Inorganic nitrogen and microbialbiomass dynamics before and during spring snowmelt. Biogeochemistry, 43(1): 1–15.
doi:10.1023/A:1005947511910
5 Burton D L, Beauchamp E G (1994). Profilenitrous oxide and carbon dioxide concentrations in a soil subjectto freezing. Soil Science Society of AmericaJournal, 58(1): 115–122
6 Deng X M, Wang J, Zhu W S, Chen D S, Liu L P (1998). Effect of freezing-thawingevent on physical properties of plow pan soil. Chinese Science Bulletin, 43(23): 2538–2541 (in Chinese)
7 Freibauer A (2003). Regionalised inventory of biogenic greenhouse gas emissionsfrom European agriculture. European Journalof Agronomy, 19(2): 135–160.
doi:10.1016/S1161‐0301(02)00020‐5
8 Gong J D, Qi X S, Xie Z K, Wang Y J (1997). Effect of seasonal freezing on soil moisture and its significancefor agriculture. Journal of Glaciologyand Geocryology, 19(4): 328–333 (in Chinese)
9 Granli T, Bøckman O C (1994). Nitrousoxide from agriculture. Norwegian Journalof Agricultural Science, 12(Suppl) 1–128
10 Groffman P M, Hardy J P, Driscoll C T, Fahey T J (2006). Snow depth, soil freezing, and fluxes of carbon dioxide, nitrousoxide and methane in a northern hardwood forest. Global Change Biology, 12(9): 1748–1760.
doi:10.1111/j.1365‐2486.2006.01194.x
11 Grogan P, Michelsen A, Ambus P, Jonasson S (2004). Freeze-thaw regime effects on carbon and nitrogen dynamicsin sub-arctic heath tundra mesocosms. SoilBiology and Biochemistry, 36(4): 641–654.
doi:10.1016/j.soilbio.2003.12.007
12 Hansson K, Šimůnek J, Mizoguchi M, Lundin L C, van Genuchten M T (2004). Waterflow and heat transport in frozen soil: Numerical solution and freeze-thawapplications. Vadose Zone Journal, 3(2): 693–704
13 IntergovernmentalPanel on Climate Change (IPCC). (2001). ClimateChange 2001: The Scientific Basis. Cambridge: Cambridge University Press, 7–76
14 Kenne L K, Lindburg B (1983). Bacterialpolysaccharides. In: Aspinall G O ed. The Polysaccharides. New York: Academic Press, 287–365
15 Klemdtsson K, Svensson B H, Rosswall T (1988). A method of selective inhibitionto distinguish between nitrification and denitrification as sourcesof nitrous oxide in soil. Biology and Fertilityof Soils, 6(2): 112–119
16 Larsen K S, Jonasson S, Michelsen A (2002). Repeated freeze-thaw cycles and theireffects on biological processes in two arctic ecosystem types. Applied Soil Ecology, 21(3): 187–195.
doi:10.1016/S0929‐1393(02)00093‐8
17 Lehrsch G A (1998). Freeze-thaw cycles increase near-surface aggregate stability. Soil Science, 163(1): 63–70.
doi:10.1097/00010694‐199801000‐00009
18 Lehrsch G A, Sojka R E, Carter D L, Jolley P M (1991). Freezing effect on aggregate stability affected by texture, mineralogyand organic matter. Soil Science Societyof America Journal, 55(5): 1401–1406
19 Lipson D A, Schadt C W, Schmidt S K (2002). Changes in soil microbial communitystructure and function in an alpine dry meadow following spring snowmelt. Microbial Ecology, 43(3): 307–314.
doi:10.1007/s00248‐001‐1057‐x
20 Ludwig B, Wolf I, Teepe R (2004). Contribution of nitrification anddenitrification to the emission of N2O in afreeze-thaw event in an agricultural soil. Journal of Plant Nutrition and Soil Science, 167(6): 678–684.
doi:10.1002/jpln.200421462
21 Müller C, Kammann C, Ottow J C G, Jäger H J (2003). Nitrous oxide emission from frozen grassland soil andduring thawing periods. Journal of PlantNutrition and Soil Science, 166(1): 46–53.
doi:10.1002/jpln.200390011
22 Müller C, Martin M, Stevens R J, Laughlin R J, Kammann C, Ottow J C G, Jäger H J (2002). Processes leading to N2O emissionsin grassland soil during freezing and thawing. Soil Biology and Biochemistry, 34(9): 1325–1331.
doi:10.1016/S0038‐0717(02)00076‐7
23 Neilsen C B, Groffman P M, Hamburg S P, Driscoll C T, Fahey T J, Hardy J P (2001). Freezing effects on carbon and nitrogencycling in northern hardwood forest soils. Soil Science Society of America Journal, 65(6): 1723–1730
24 Odu C T I, Adeoye K B (1970). Heterotrophicnitrification in soils – a preliminary investigation. Soil Biology and Biochemistry, 2(1): 41–45.
doi:10.1016/0038‐0717(70)90024‐6
25 Oztas T, Fayetorbay F (2003). Effectof freezing and thawing processes on soil aggregate ability. Catena, 52(1): 1–8.
doi:10.1016/S0341‐8162(02)00177‐7
26 Papen H, Butterbach-Bahl K (1999). 3-yearcontinuous record of N-trace gas fluxes from untreated and limed soilof a N-saturated spruce and beech forest ecosystem in Germany: I.N2O emissions.Journal of Geophysical Research-Atmosphere, 104(D15): 18487–18503.
doi:10.1029/1999JD900293
27 Parsons J W (1981). Chemistry and distribution of amino sugars in soilsand soil organisms. In: Paul E A, Ladd J N, eds. SoilBiochemistry, Vol.5. New York: Marcel Dekker, 197–227
28 Priemé A, Christensen S (2001). Naturalperturbations, drying-wetting and freezing-thawing cycles, and theemission of nitrous oxide, carbon dioxide and methane farmed organicsoils. Soil Biology and Biochemistry, 33(15): 2083–2091.
doi:10.1016/S0038‐0717(01)00140‐7
29 Puget P, Chenu C, Balesdent J (1995). Total and young organic matter distributionsin aggregates of silty cultivated soils. European Journal of Soil Science, 46(3): 449–459.
doi:10.1111/j.1365‐2389.1995.tb01341.x
30 Radke J K, Berry E C (1998). Soilwater and solute movement and bulk density changes in repacked soilcolumns as a result of freezing and thawing under field conditions. Soil Science, 163(8): 611–624.
doi:10.1097/00010694‐199808000‐00002
31 Regina K, Syväsalo E, Hannukkala A, Esala M (2004). Fluxes of N2O from farmed peat soils in Finland. European Journal of Soil Science, 55(4): 591–599.
doi:10.1111/j.1365‐2389.2004.00622.x
32 Richardson D J, Wehrfritz J M, Keech A, Crossman L C, Roldan M D, Sears H J, Butler C S, Reilly A, Moir J W B, Berks B C, Ferguson S J, Thomson A J, Spiro S (1998). The diversityof redox proteins involved in bacterial heterotrophic nitrificationand aerobic denitrification. BiochemicalSociety Transactions, 26(3): 401–408
33 Robertson L A, Kuenen J G (1990). Combinedheterotrophic nitrification and aerobic denitrification in Thiosphaerab pantotropha and other bacteria. Antonie van Leeuwenhoek, 57(2): 139–152.
doi:10.1007/BF00403948
34 Röver M, Heinemeyer O, Kaiser E A (1998). Microbial induced nitrous oxide emissionsfrom an arable soil during winter. SoilBiology and Biochemistry, 30(14): 1859–1865.
doi:10.1016/S0038‐0717(98)00080‐7
35 Sameshima-Saito R, Chiba K, Minamisawa K (2004). New method of denitrification analysisof Bradyrhizobium field isolatesby gas chromatographic determination of 15N-labeled N2. Appliedand Environmental Microbiology, 70(5): 2886–2891.
doi:10.1128/AEM.70.5.2886‐2891.2004
36 Schadt C W, Martin A P, Lipson D A, Schmidt S K (2003). Seasonal dynamics of previously unknown fungal lineagesin tundra soils. Science, 301(5638): 1359–1361.
doi:10.1126/science.1086940
37 Sharma S, Szele Z, Schilling R, Munch J C, Schloter M (2006). Influence of freeze-thawstress on the structure and function of microbial communities anddenitrifying populations in soil. Appliedand Environmental Microbiology, 72(3): 2148–2154.
doi:10.1128/AEM.72.3.2148‐2154.2006
38 Sowden F J, Ivarson K C (1974). Effectsof temperature on changes in the nitrogenous constituents of mixedforest litters during decomposition after inoculation with variousmicrobial cultures. Canadian Journal ofSoil Science, 54(3): 387–394
39 Stevens R J, Laughlin R J, Atkins G J, Prosser S J (1993). Automated determination of nitrogen-15 labeled dinitrogenand nitrous oxide by mass spectrometry. Soil Science Society of America Journal, 57(4): 981–988
40 Teepe R, Brumme R, Beese F (2001). Nitrous oxide emissions from soilduring freezing and thawing periods. SoilBiology and Biochemistry, 33(9): 1269–1275.
doi:10.1016/S0038‐0717(01)00084‐0
41 Teepe R, Vor A, Beese F, Ludwig B (2004). Emissions of N2O from soils during cyclesof freezing and thawing and the effects of soil water, texture andduration of freezing. European Journalof Soil Science, 55(2): 357–365.
doi:10.1111/j.1365‐2389.2004.00602.x
42 Tilman D, Cassman K G, Matson P A, Naylor R, Polasky S (2002). Agricultural sustainabilityand intensive production practices. Nature, 418(6898): 671–677.
doi:10.1038/nature01014
43 Tortoso A C, Hutchinson G L (1990). Contributionof autotrophic and heterotrophic nitrifiers to soil NO and N2O emissions. Applied andEnvironmental Microbiology, 56(2): 1799–1805
44 van Bochove E, Prévost D, Pelletier F (2000). Effects of freeze-thaw and soil structureon nitrous oxide produced in a clay soil. Soil Science Society of America Journal, 64(5): 1638–1643
45 Wagner-Riddle C, Thurtell G W, Kidd G K, Beauchamp E G, Sweetman R (1997). Estimatesof nitrous oxide emissions from agricultural fields over 28 months. Canadian Journal of Soil Science, 77(2): 135–144
46 Wang J, Zhang X D, Xie H T, Zhu P, Jiang G M (2003). New quantificationalindexes in modern study of soil organic matter. Chinese Journal of Applied Ecology, 14(10): 1809–1812 (in Chinese)
47 Wang L F Cai Z C, Yang L F, Meng L (2005). Effect of disturbance and glucoseaddition on nitrous oxide and carbon dioxide emissions from a paddysoil. Soil and Tillage Research, 82(2): 185–194.
doi:10.1016/j.still.2004.06.001
48 Wang L F, Cai Z C (2005). Dynamicsof denitrifying enzyme activity in red soils as affected by watertreatment. In: Zhu Z L, Minami K, Xing G X, eds. 3rd International Nitrogen Conference ContributedPapers. New York: Science Press USA Inc, 174–177
49 Wang L F, Cai Z C, Yan H (2004). Nitrous oxide emission and reductionin a laboratory-incubated paddy soil response to water pre-treatment. Journal of Environmental of Sciences, 16(3): 253–257
50 Wood P M (1990). Autotrophic and heterotrophic mechanisms for ammoniaoxidation. Soil Use and Management, 6(1): 78–79.
doi:10.1111/j.1475‐2743.1990.tb00807.x
51 Wrage N, van Groenigen J W, Oenema O, Baggs E M (2005). A novel dual-isotope labelling method for distinguishing betweensoil sources of N2O. Rapid Communications in Mass Spectrometry, 19(22): 3298–3306.
doi:10.1002/rcm.2191
52 Wrage N, Velthof G L, van Beusichem M L, Oenema O (2001). Role of nitrifier denitrification in the productionof nitrous oxide. Soil Biology and Biochemistry, 33(12/13): 1723–1732.
doi:10.1016/S0038‐0717(01)00096‐7
53 Zhang X, Amelung W (1996). Gas chromatographicdetermination of muramic acid, glucosamine, mannosamine, and galactosaminein soils. Soil Biology and Biochemistry, 28(9): 1201–1206.
doi:10.1016/0038‐0717(96)00117‐4
54 Zhao Q G, Wang H Q, Gu G A (1993). Gelosols of China. Acta Pedologica Sinica, 30(4): 341–354 (in Chinese)
55 Zheng X Q, van Liew M W, Flerchinger G N (2001). Experimental study of infiltrationinto a bean stubble field during seasonal freeze-thaw period. Soil Science, 166(1): 3–10.
doi:10.1097/00010694‐200101000‐00002
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed