Please wait a minute...
Frontiers of Agriculture in China

ISSN 1673-7334

ISSN 1673-744X(Online)

CN 11-5729/S

Front Agric Chin    2009, Vol. 3 Issue (3) : 337-345     DOI: 10.1007/s11703-009-0034-x
RESEARCH ARTICLE |
Genetic diversity of Robinia pseudoacacia populations in China detected by AFLP markers
Xuemei HUO, Hongwei HAN, Jun ZHANG, Minsheng YANG()
College of Forestry, Agricultural University of Hebei, Baoding 071001, China
Download: PDF(191 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract  

The genetic diversity of ten Robinia pseudoacacia L. populations collected from China was analyzed by amplified fragment length polymorphism (AFLP) technique using ten primer combinations. A total of 752 amplified bands were obtained, among which 352 (46.8%) were polymorphic. At species level, the percentage of polymorphic loci (P) was 49.87%, the Shannon’s information index (I) was 0.2160, and the mean Nei’s gene diversity index (H) was 0.1403. At population level, P=25.47%, I=0.1381, and H=0.0927. The genetic diversity within populations was higher than that among populations. The coefficient of gene differentiation among populations within species (Gst) was 0.390, which indicated that gene differentiation was mainly within the population, and between populations, it accounted for 33.90% of the total variation. Gene flow (Nm) between the populations was 0.975, suggesting that the gene exchange between populations was small. The UPGMA cluster analysis showed that the ten populations were divided into three major groups, and most individuals from the same population were clustered together. There was no significant correlation between the genetic diversity parameters (D, IN, P, Ne, H, and I) and geographic and climatic factors (longitude, latitude, annual mean temperature, and annual mean precipitation). The results provide useful information about the level of genetic diversity, and it has a wide application prospect in Robinia pseudoacacia L. utilization and breeding in China.

Keywords amplified fragment length polymorphism (AFLP)      genetic diversity      genetic structure      population      Robinia pseudocacia L.     
Corresponding Authors: YANG Minsheng,Email:Deu100@yahoo.com.cn   
Issue Date: 05 September 2009
URL:  
http://academic.hep.com.cn/fag/EN/10.1007/s11703-009-0034-x     OR     http://academic.hep.com.cn/fag/EN/Y2009/V3/I3/337
Fig.1  The distribution regions of ten L. populations
no.seed sourcelongitude (E)latitude (N)annual meantemperature/°Cannual mean precipitation/mm
countyprovince
1ChaoyangLiaoning120.4241.588.6476.4
2ChifengInner Mongolia118.8742.287.2354.8
3JingchuanGansu107.3835.318.6521.3
4YanglingShaanxi108.9534.2713.4573.0
5ChangliHebei119.1539.7210.0735.2
6WeifangShandong119.1036.6212.2626.8
7LushiHenan111.0334.0612.6637.1
8XinzhouHubei114.8031.8415.3847.1
9FeixiAnhui117.1531.7015.7975.2
10KunmingYunnan102.7325.0414.61006.6
Tab.1  Geographical and ecological conditions of the ten studied L. populations
Fig.2  An AFLP profile of 10 L. populations using primer combination E71/M60
Note: Nos. 1-10 represent populations of L. as described in Table 1.
primer codeprimer pairstotal bandsband length range/bppolymorphic bandspolymorphic rate/%
E71/M82E-GGA/M-TAT91110-4044650.5
E71/M60E-GGA/M-CTC87110-6223742.5
E57/M71E-CGG/M-GGA7790-5273849.4
E57/M49E-CGG/M-CAG83110-4043137.3
E40/M82E-AGC/M-TAT8876-4043944.3
E40/M48E-AGC/M-CAC38110-4041744.7
E40/M62E-AGC/M-CTT78110-4043747.4
E33/M47E-AAG/M-CAA9776-4044445.4
E35/M47E-ACA/M-CAA7476-5274459.5
E32/M48E-AAC/M-CAC39110-4041948.7
total752352
average75.235.246.8
Tab.2  Polymorphism of AFLP bands obtained by selective amplification based on the ten studied primer pairs
populationspecific bandsband codespecific band rate/%shared band rate/%
Chaoyang9E71/M82-28-3, E57/M71-7-5, E57/M71-37-3, E57/M49-46-2, E40/M82-3-1, E40/M82-29-4, E35/M47-104-2, E40/M48-7-3, E33/M47-23-31.2069.02
Chifeng2E57/M71-56-4, E35/M47-36-30.2773.80
Jingchuan2E35/M47-66-3, E33/M47-13-50.2773.27
Yangling16E71/M82-27-3, E71/M82-29-3, E71/M60-17-4, E71/M60-24-1, E71/M60-32-2, E57/M49-2-4, E40/M82-2-4, E40/M82-11-2, E35/M47-20-4, E35/M47-27-1, E35/M47-30-5, E35/M47-43-4, E40/M62-59-5, E33/M47-20-3, E33/M47-32-4, E32/M48-68-52.1370.35
Changli1E57/M49-28-10.1379.92
Weifang4E71/M60-35-5, E40/M82-43-1, E35/M47-99-3, E40/M48-26-30.5377.13
Lushi4E57/M49-34-2, E40/M82-18-5, E35/M47-87-4, E33/M47-46-50.5375.53
Xinzhou2E57/M49-33-3, E35/M47-60-10.2774.34
Feixi2E33/M47-14-2, E33/M47-30-10.2773.80
Kunming3E71/M60-33-3, E40/M82-26-1, E40/M48-2-50.4078.19
mean4.50.6074.54
total45
Tab.3  Statistics of AFLP specific bands of the ten populations
populationNaAPP/%NaNeHI
species level10037549.871.4987±0.50031.2328±0.33310.1403±0.18230.2160±0.2629
Chaoyang1023330.981.3098±0.46271.1886±0.32460.1106±0.17830.1656±0.2591
Chifeng1019726.201.2620±0.44001.1608±0.31390.0931±0.16990.1392±0.2461
Jingchuan1020126.731.2673±0.44281.1745±0.32790.0997±0.17700.1475±0.2552
Yangling1022329.651.2965±0.45701.1815±0.32430.1057±0.17660.1582±0.2561
Changli1015120.081.2008±0.40091.1195±0.26970.0708±0.15080.1064±0.2209
Weifang1017222.871.2287±0.42031.1364±0.28690.0804±0.15890.1207±0.2319
Lushi1018424.471.2447±0.43021.1521±0.30430.0884±0.16680.1319±0.2422
Xinzhou1019325.661.2566±0.43711.1687±0.32200.0966±0.17500.1428±0.2527
Feixi1019726.201.2620±0.44001.1774±0.33260.1005±0.17930.1478±0.2579
Kunming1016421.811.2181±0.41321.1429±0.30550.0814±0.16490.1204±0.2378
mean10191.525.471.25471.16020.09270.1381
Tab.4  Genetic variability of ten populations based on AFLP markers
Fig.3  Dendrogram of UPGMA analysis of ten populations based on AFLP makers
Fig.4  Dendrogram of 50 samples based on AFLP markers with ten primer combinations
Note: CY, CF, JC, YL, CL, WF, LS, XZ, FX and KM represent Chaoyang, Chifeng, Jingchuan, Yangling, Changli, Weifang, Lushi, Xinzhou, Feixi and Kunming, respectively.
geographic and climatic factorsDINPNeHI
longitude-0.4110.4110.083-0.056-0.0040.018
latitude-0.5990.5950.2790.0440.1180.157
annual mean temperature0.524-0.520-0.1880.001-0.051-0.082
annual mean precipitation0.573-0.566-0.476-0.241-0.308-0.348
Tab.5  The relationship between genetic diversity parameters and geographic and climatic factors
1 Brown A H D, Moran G F (1981). Isozymes and the genetic resources of forest trees. In: Conkte M T, ed. Proceedings of a Symposium on Isozymes of North American Forest Trees and Forest Insects . NC: USA For Serv Gen Tech Rep, PSW-48, 1-10
2 Chang C S, Bongarten B, Hamrick J (1998). Genetic structure of natural populations of black locust (Robinia pseudoacacia L.) at Coweeta, North Carolina. Journal of Plant Research , 111: 17-24
doi: 10.1007/BF02507146
3 Cheng L L, Su S C, Qin L, Yin W L (2005). Extraction of DNA and establishment of AFLP techniques in leaves of Castanea mollissima Blume. Journal of Beijing Agricultural College , 20(2): 5-10 (in Chinese)
4 Doyle J J, Doyle J L (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bulletin , 19: 11-15
5 Gu J T, Yang M S, Li Y M (2006). Allozyme genetic investigation on Robinia pseudoacacia. Scientia Silvae Sinicae , 42(11): 138-145 (in Chinese)
6 Hamrick J L, Godt M J W, Sherman-Broyles S L (1992). Factors influencing levels of genetic diversity in woody plant species. New Forests , 6: 95-124
doi: 10.1007/BF00120641
7 Hill M, Witsenboer H, Zabeau M, Vos P, Kesseli R, Michelmore R (1996). PCR-based fingerprinting using AFLPs as a tool for studying genetic relationships in Lactuca spp. Theoretical and Applied Genetics , 93(8): 1202-1210
doi: 10.1007/BF00223451
8 Lang P, Huang H W (1999). Genetic diversity and geographic variation in natural populations of the Endemic castanea species in China. Acta Botanica Sinica , 41(6): 651-657 (in Chinese)
9 Li W Y, Gu W C, Zhou S L (2003). AFLP analysis on genetic diversity of Quercus mongolica populations. Scientia Silvae Sinicae , 39(5): 29-36 (in Chinese)
10 Li Z B, Lin P (2001). The study on genetic diversity of Aegiceras corniculatum populations in different latitudes. Journal of Jimei University , 6(1): 39-45 (in Chinese)
11 Liesebach H, Yang M S, Schneck V (2004). Genetic diversity and differentiation in a black locust (Robinia pseudoacacia L.) progeny test. Forest Genetics , 11(2): 151-161
12 Loveless M D, Hamrick J L H (1984). Ecological determinants of genetic structure in plant populations. Annual Review Ecology System , 15: 65-95
doi: 10.1146/annurev.es.15.110184.000433
13 Major A, Malvolti M E, Cannata F (1998). Comparison of isozyme and RAPD variability of black locust (Robinia pseudoacacia) clones selected for silvicultural objectives. Journal of Genetics & Breeding , 52: 49-62
14 Nei M (1973). Analysis of gene diversity in subdivided populations. Proceedings of the National Academy Sciences, USA , 70(12): 3321-3323
doi: 10.1073/pnas.70.12.3321
15 Peng H, Chen X R, Yu Z D (2003). Know-how on silviculture of black locust plantation. Journal of Soil and Water Conservation , 17(5): 11-15 (in Chinese)
16 Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, Rafalski A (1996). The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Molecular Breeding , 2(3): 225-238
doi: 10.1007/BF00564200
17 Redei K (1999). Black locust (Robinia pseudoacacia L.) improvement and management in Hungary. Forestry Studies in China , 11(2): 42-46
18 Shim S I, Jorgensen R B (2000). Genetic structure in cultivated and wild carrots (Daucus carota L.) revealed by AFLP analysis. Theoretical and Applied Genetics , 101: 227-233
doi: 10.1007/s001220051473
19 Song H Z, Zhang Q W, Zhou C J (2007). Analysis of genetic diversity of some species in Populus by AFLP marker. Scientia Silvae Sinicae , 43(12): 64-69 (in Chinese)
20 Surles S E, Hamrick J L, Bongarten B C (1989). Allozyme in black locust (Robinia pseudoacacia). Canadian Journal of Forest Research , 19(44): 471-479
doi: 10.1139/x89-073
21 Vos P, Hogers R, Bleeker M, Reijans M, Lee T V D, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995). AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research , 23(21): 4407-4414
doi: 10.1093/nar/23.21.4407
22 Wang L, Xing S Y, Yang K Q, Wang Z H, Gu Y Y, Shu H R (2006). Genetic relationships of ornamental cultivars of Ginkgo biloba analyzed by AFLP techniques. Acta Genetica Sinica , 33(11): 1020-1026
doi: 10.1016/S0379-4172(06)60138-8
23 Wang X R, Zhao Y, Chen X Y (2007). AFLP analysis of genetic diversity among Lespedeza bicolor populations. Bolletin of Botanical Research , 27(6): 736-740 (in Chinese)
24 Yang M S, Heike H, Volker S (2004). Genetic diversity and population structure of Robinia pseudoacacia provenances from middle Europe. Acta Ecologica Sinica , 24(12): 2700-2706 (in Chinese)
25 Yeh F C, Yang R C, Boyle T B J, Ye Z H, Mao J X (1997). Popgene, the user-friendly shareware for population genetic analysis. Edmonton: University of Alberta, Molecular Biology and Biotechnology Centre
26 Yuan Z H, Chen X S, He T M, Feng J R, Feng T, Zhang C Y (2007a). Population genetic structure in apricot (Prunus armeniaca L.) cultivars revealed by fluorescent-AFLP markers in southern Xinjiang, China. Journal of Genetics and Genomics , 34(11): 1037-1047
doi: 10.1016/S1673-8527(07)60117-9
27 Yuan Z H, Yin Y L, Qu J L, Zhu L Q, Li Y (2007b). Population genetic diversity in Chinese pomegranate (Punica granatum L.) cultivars revealed by fluorescent-AFLP markers. Journal of Genetics and Genomics , 34(12): 1061-1071
doi: 10.1016/S1673-8527(07)60121-0
28 Zhang J L, Wang Z F, Li M G, Wang B S (2000). Molecular markers and their application in plant population research. Chinese Journal of Applied Ecology , 11(4): 631-636 (in Chinese)
29 Zhang L, Huang B B, Kai G Y, Guo M L (2006). Analysis of intraspecific variation of Chinese Carthamus tinctorius L. using AFLP markers. Acta Pharmaceutica Sinica , 41(1): 91-96 (in Chinese)
30 Zhang P, Liu J S, Jin C D, Zhang Y Z (2002). Cultivation and using status of Robinia pesudoacacia. Journal of Agricultural Science Yanbian University , 24(2): 223-227 (in Chinese)
[1] Ram Kailash P. YADAV, Katerina KARAMANOLI, Despoina VOKOU. Bacterial populations on the phyllosphere of Mediterranean plants: influence of leaf age and leaf surface[J]. Front Agric Chin, 2011, 5(1): 60-63.
[2] Juntao GU, Minsheng YANG, Jinmao WANG, Jun ZHANG, Haiyong LIANG, Li JIA, . Genetic diversity analysis of black locust ( Robinia pseudoacacia L.) distributed in China based on allozyme markers approach[J]. Front. Agric. China, 2010, 4(3): 366-374.
[3] Yanqin LI, Xiaoling FAN, Tonglin SHI, Quanbin ZHANG, Zongwen ZHANG, . SRAP marker reveals genetic diversity in tartary buckwheat in China[J]. Front. Agric. China, 2009, 3(4): 383-387.
[4] Kai WEI, Hao ZHANG, Xianfeng XU, Zuxin ZHANG, Hewei DU, Yiqin HUANG, . Evaluation of phenotype and genetic diversity of maize landraces from Hubei Province, Southwest China[J]. Front. Agric. China, 2009, 3(4): 374-382.
[5] Chunlong LIU, Zhongqiu LI, Fugang PENG, Yanming REN, Zhuolong WANG. Research on Y. schidigera extract feeding on the rumen ecology, protozoal populations and serum chemistries of sheep[J]. Front Agric Chin, 2009, 3(1): 89-94.
[6] PAN Zhifen, LONG Hai, YU Maoqun, DENG Guangbing, ZHAI Xuguang, TANG Yawei, QIANG Xiaolin. Molecular analysis of cultivated naked barley ( L.) from Qinghai-Tibet Plateau in China using SSR markers[J]. Front. Agric. China, 2008, 2(4): 372-379.
[7] ZHU Li, LI Xuewei, SHUAI Surong, LI Mingzhou, LI Fangqiong, CHEN Lei. Analysis of genetic distribution and population genetic structure of the gene in 10 pig breeds[J]. Front. Agric. China, 2008, 2(3): 348-354.
[8] CHEN Fabo, YANG Kecheng, RONG Tingzhao, PAN Guangtang. Analysis of genetic diversity of maize hybrids in the regional tests in Sichuan and Southwest China[J]. Front. Agric. China, 2008, 2(2): 162-171.
[9] LI Xianglong, ZHOU Rongyan, ZHENG Guiru, LI Lanhui, LIU Zhengzhu, GONG Yuanfang. Deletion of TTTTA in 5′UTR of goat gene and its distribution in different population groups and genetic effect on bodyweight at different ages[J]. Front. Agric. China, 2008, 2(1): 103-109.
[10] QU Dongyan, YANG Zhangping, GUO Xiaoya, MAO Yongjiang, SUN Wei, GEN Rongqing, REN Xianglian, CHANG Guobing, HUANG Danli, CHANG Hong, MA Yuehui. Study on polymorphisms of microsatellite DNA of six Chinese indigenous sheep and goat breeds[J]. Front. Agric. China, 2007, 1(4): 472-477.
[11] WANG Xingfen, MA Jun, YANG Shuo, ZHANG Guiyin, MA Zhiying. Assessment of genetic diversity among Chinese upland cottons with Fusarium and/or Verticillium wilts resistance by AFLP and SSR markers[J]. Front. Agric. China, 2007, 1(2): 129-135.
[12] Hui YE,Jianhong LIU. Population dynamics of oriental fruit fly Bactrocera dorsalis (Diptera: Tephritidae) in Xishuangbanna, Yunnan Province, China[J]. Front. Agric. China, 2007, 1(1): 76-80.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed