Please wait a minute...
Frontiers of Agriculture in China

ISSN 1673-7334

ISSN 1673-744X(Online)

CN 11-5729/S

Front Agric Chin    2009, Vol. 3 Issue (2) : 159-163    https://doi.org/10.1007/s11703-009-0040-z
RESEARCH ARTICLE
Biological characteristics of Bacillus thuringiensis strain Bt11 and identification of its cry-type genes
Tinghui LIU1, Wei GUO1,2(), Weiming SUN2, Yongxiang SUN2
1. College of Plant Protection, Agricultural University of Hebei, Biological Control Center of Plant Diseases and Plant Pests of Hebei Province, Baoding 071001, China; 2. College of Life Sciences, Agricultural University of Hebei, Baoding 071001, China
 Download: PDF(137 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A novel strain of Bacillus thuringiensis Bt11, isolated from soil samples in China, was classified and characterized in terms of its crystal proteins, cry genes content. The Bt11 strain showed high toxicity against Spodoptera exigua and Helicoverpa armigera neonates. Bt11 strain shares morphological and biochemical characteristics with the previously described Bacillus thuringiensis subsp. kurstaki. SDS-polyacrylamide gel electrophoresis revealed that crystals were composed of several polypeptides ranging from 20 to 130 kDa, of which the 35, 80, and 130 kDa proteins were the major components. PCR-RFLP with total DNA from strain Bt11 and specific primers for cry1, cry2, cry3, cry4/10, cry7, cry8, cry9, and cry11 genes revealed that cry1Aa, cry1Ab, cry1Ia, and cry9Ea genes were present.

Keywords Bacillus thuringiensis      insecticidal activity      biochemical reaction      PCR-RFLP     
Corresponding Author(s): GUO Wei,Email:guowei@hebau.edu.cn   
Issue Date: 05 June 2009
 Cite this article:   
Wei GUO,Weiming SUN,Yongxiang SUN, et al. Biological characteristics of Bacillus thuringiensis strain Bt11 and identification of its cry-type genes[J]. Front Agric Chin, 2009, 3(2): 159-163.
 URL:  
https://academic.hep.com.cn/fag/EN/10.1007/s11703-009-0040-z
https://academic.hep.com.cn/fag/EN/Y2009/V3/I2/159
colonynumber of larvae testedtreatment concentration/spores·mL-1corrected mortality/%
Helicoverpa armigera505.9×107100
Spodoptera exigua505.9×107100
Tab.1  Bioassay results of Bt11 strain
Fig.1  The spore and crystal of Bt11 strain
strainmyco-demaV.Preactionlecithinasesalicinsurcrosecellobiosemannosestarchhydrolysisproteinhydrolysisurease
Bt11-+++-++++
Tab.2  Physiological and biochemical characteristics of Bt11 strain
Fig.2  The growth curve of Bt11 strain and standard strain HD-73
Fig.3  SDS-PAGE analysis of isolate Bt11
Note: 1 represents protein molecular weight marker (High) (212, 116, 97, 66, 44 kDa); 2 represents Bt11 strain.
geneprimerproduct size/bprestriction enzymeRFLP results/bp
cry1AaK5un2 /K3un21635Pst I & Xba I1117, 518
K5un3 /K3un31463EcoR I& Pst I726, 493, 244
cry1AbK5un2 /K3un21557Pst I & Xba I1039, 518
K5un3 /K3un31463EcoR I & Pst I726, 493, 244
cry1IaS5uni /S3uni1584Bsp119 I & Ban I141, 444, 571, 47, 381
cry2AbS5un2 /S3un21231Hinc II & Msp I791, 297, 143
cry9EaS5un9 /S3un91550Msp I & ClaI1402, 148
Tab.3  -type gene contents of the isolate Bt11
Fig.4  Garose gel eletrophoresis of PCR-RFLP
Note: (a) represents the result of Bt11 and gene PCR-RFLP, with M represents ΦX174- III digest DNA Maker; 1, 2, 3, 4, 5 and 6 representative of Bt11-K2PCR/ I & I, Bt11-K2PCR, Bt11-K3PCR /R I & I, Bt11-K3PCR, Bt11-S2PCR/c II & I and Bt11-S2PCR, respectively. (b) represents the result of Bt11gene PCR-RFLP with M, 1 and 2 representing 100 bp DNA marker, Bt11-S1iPCR/119 I & I and Bt11-S1Ipcr, respectively. (c) represents the result of Bt11 gene PCR-RFLP with M, 1 and 2 representing DNA marker DL2000, Bt11-S9PCR and Bt11-S9PCR/ I & I, respectively.
1 Abbott W S (1925). A method of computing the effectiveness of an insecticide. J Econ Entomol , 18: 265-267
2 Ceron J, Covarrubias L, Quintero R, Ortiz A, Ortiz M, Aranda E, Lina L, Bravo A (1994). PCR analysis of the cryI insecticidal crystal family genes from Bacillus thuringiensis. Appl Environ Microbiol , 60(1): 353-356
3 Dai L Y, Wang X P (1997). Progress of Study on Bacillus thuringiensis. Beijing: Science Press, 15-23 (in Chinese)
4 Dankocsik C, Donovan W P, Jany C S (1990). Activation of a cryptic crystal protein gene of Bacillus thuringiensissubspecies kurstakiby gene fusion and determination of the crystal protein insecticidal specificity. Mol Microbiol , 4(12): 2087-2094
doi: 10.1111/j.1365-2958.1990.tb00569.x
5 De Maagd R A, Kwa M S, Van der Klei H, Yamamoto T, Schipper B,Vlak J M, Stiekema W J, Bosch D (1996). Domain III substitution in Bacillus thuringiensisdelta-endotoxin CryIA (b) results in superior toxicity for Spodoptera exiguaand altered membrane protein recognition. Appl Environ Microbiol , 62(5): 1537-1543
6 Gill S S, Cowles E A, Pietrantonio P V (1992). The mode of action of Bacillus thuringiensisendotoxins. Annu Rev Entomol , 37: 615-636
doi: 10.1146/annurev.en.37.010192.003151
7 Guo W (2005). Studies on the inheritance of resistance to Bacillus thuringiensisCry1Ac and defense system of Cabbage Looper, Trichoplusia ni. Dissertation for the Doctoral Degree . Guangzhon: Zhongshan (Sun Yen-sen) University (in Chinese)
8 Iracheta M M, Pereyra-Alférez B, Galán-Wong L, Ferré J (2000). Screening for Bacillus thuringiensiscrystal proteins active against the cabbage looper, Trichoplusia ni. J Invertebr Pathol , 76(1): 70-75
doi: 10.1006/jipa.2000.4946
9 Kuo W S, Chak K F (1996). Identification of novel cry-type genes from Bacillus thuringiensisstrains on the basis of restriction fragment length polymorphism of the PCR amplified DNA. Appl Environ Microbiol , 62(4): 1369-1377
10 Lecadet M M, Frachon E, Dumanoir V C, Ripouteau H, Hamon S, Laurent P, Thiéry I (1999). Updating the H-antigen classification of Bacillus thuringiensis. J Appl Microbiol , 86: 660-672
doi: 10.1046/j.1365-2672.1999.00710.x
11 LeOra Software. POLO-PC: probit and logit analysis (1997). Berkeley, CA: University of California, Berkeley
12 Li R S, Chen T, Deng H F (1983). The ultramicro structure of Bacillus thuringiensis. Acta Microbiologica Sinica , 23(4): 343-346 (in Chinese)
13 Li R S, Chen T, Luo C (1989).The toxicity and morphology structure of Bacillus thuringiensis. Acta Microbiologica Sinica , 29(6): 397-404 (in Chinese)
14 Liao C, Heckel D G, Akhurst R (2002). Toxicity of Bacillus thuringiensisinsecticidal proteins for Helicoverpa armigeraand Helicoverpa punctigera(Lepidoptera: Noctuidae), major pests of cotton. J Invertebr Pathol , 80(1): 55-63
doi: 10.1016/S0022-2011(02)00035-6
15 Russell R M, Robertson J L, Savin N E (1977). POLO: a new computer program for probit analysis. Bull Entomol Soc Am , 23: 209-213
16 Saiki R K, Gelfand D H, Stoffel S, Scharf S J, Higuchi R, Horn G T, Mullis K B, Erlich H A (1988). Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science , 239: 487-491
doi: 10.1126/science.2448875
17 Sambrook J, Fritsch E F, Maniatis T (1989). Molecular Cloning: A Laboratory Manual (in Chinese, trans. Jin Dongyan, Li Mengfeng). 2nd ed. Beijing: Science Press, 1992
18 Song F P, Zhang J, Xie T J, Yang Z W, Dai L Y, Li G X (1998). Establishment of PCR RFLP identification system of cry genes from Bacillus thuringiensis. Scientia Agricultura Sinica , 31(3): 13-18 (in Chinese)
19 Yu Z N (1990). Bacillus thuringiensis. Beijing: Science Press, 25-47 (in Chinese)
20 Zhang G M (2001). Bacillus thuringiensis and its parasporal crystal protein. In: Cheng J A, Tang Z H, eds. Insect Molecular Science . Beijing: Science Press, 293-326 (in Chinese)
21 Zhao J Z, Cao J, Li Y, Collins H L, Roush R T, Earle E D, Shelton A M (2003). Transgenic plants expressing two Bacillus thuringiensis toxins delay insect resistance evolution. Nature Biotechnology , 21(12): 1493-1497
doi: 10.1038/nbt907
[1] Dan ZHAO, Wei GUO, Weiming SUN, Daqing XU, Daqun LIU. Identification of a novel enhancin-like gene from Bacillus thuringiensis[J]. Front Agric Chin, 2011, 5(4): 423-429.
[2] ZHANG Xiaohui, XU Shangzhong, GAO Xue, ZHANG Lupei, REN Hongyan, CHEN Jinbao. The application of asymmetric PCR-SSCP in gene mutation detecting[J]. Front. Agric. China, 2008, 2(3): 361-364.
[3] LI Xianglong, ZHANG Zengli, JIA Qing, WANG Lize, GONG Yuanfang, LIU Zhengzhu. mtDNA D-loop of Chinese main indigenous sheep breeds using PCR-RFLP[J]. Front. Agric. China, 2007, 1(3): 352-356.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed