Please wait a minute...
Frontiers of Agriculture in China

ISSN 1673-7334

ISSN 1673-744X(Online)

CN 11-5729/S

Front Agric Chin    2009, Vol. 3 Issue (3) : 231-239     DOI: 10.1007/s11703-009-0062-6
Current progress on genetic interactions of rice with rice blast and sheath blight fungi
Yulin JIA1(), Guangjie LIU2, Stefano COSTANZO1, Seonghee LEE2, Yuntao DAI2
1. USDA-ARS, Dale Bumpers National Rice Research Center, Stuttgart AR 72160, USA; 2. Rice Research and Extension Center, University of Arkansas, Stuttgart AR 72160, USA
Download: PDF(327 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

Analysis of genetic interactions between rice and its pathogenic fungi Magnaporthe oryzae and Rhizoctonia solani should lead to a better understanding of molecular mechanisms of host resistance, and the improvement of strategies to manage rice blast and sheath blight diseases. Currently, dozens of rice resistance (R) genes against specific races of the blast fungus have been described. Among them, ten were molecularly characterized and some were widely used for breeding for genetic resistance. The Pi-ta gene was one of the best characterized rice R genes. Following the elucidation of its molecular structure, interaction, distribution, and evolution, user friendly DNA markers were developed from portions of the cloned genes to facilitate the incorporations of the Pi-ta mediated resistance into improved rice varieties using marker assisted selection (MAS). However, rice blast is still a major threat for stable rice production because of race change mutations occurring in rice fields, which often overcome added resistance based on single R genes, and these virulent races of M. oryzae pose a continued challenge for blast control. For sheath blight, progress has been made on the exploration of novel sources of resistance from wild rice relatives and indica rice cultivars. A major quantitative trait locus (QTL), named qSB9-2, was recently verified in several mapping populations with different phenotyping methods, including greenhouse methods. The ability to identify qSB9-2 using greenhouse methods should accelerate the efforts on the qSB9-2 fine mapping and positional cloning.

Keywords blast      Magnaporthe oryzae      Oryza sativa      Pi-ta      rice      Rhizoctonia solani      sheath blight     
Corresponding Authors: JIA Yulin,   
Issue Date: 05 September 2009
URL:     OR
Fig.1  Blast disease of rice
Note: A germinated conidium of (a), typical symptoms of leaf blast (b), and typical symptom of panicle blast (c), left, and panicles at right are healthy (controls). Pictures were taken by a digital camera. Leaf blast was captured 7 days after infection with , and panicle blast was collected in an experimental field in Arkansas, USA.
Fig.2  Sheath blight disease of rice
Note: Rice cultivar Jasmine 85 showing highly resistance, and rice cultivar Lemont showing highly susceptibility. Picture was taken in a sheath blight nursery post anthesis after inoculation with a field isolate from Arkansas, USA.
Fig.3  A model of mediated disease resistance showing the existence of additional plant component
Note: was predicted to be translocated to the inside of plant cells in triggering /-mediated resistance. () was identified to be essential for - mediated resistance.
Fig.4  Levels of Tajima’s in accessions of and
Note: Levels of Tajima’s for (a) , (b) . The arrow indicates the position of the gene. The nucleotide diversity of the genomic region around the locus in (upper) accessions showing Tajima’s statistics of the alleles and the six flanking genes spanning the locus whose physical locations were shown in the lower panel.
Fig.5  Diagram of genomic structures of cloned blast resistance genes
Note: Exons are indicated by boxes, and introns by thin lines angled upward. For and , where two genes are required to confer rice blast resistance, their genomic distance in kb is reported at the center of the diagram.
name of the AVR genestructural featurehost R genereference
AVR-Pitaputative neutral zinc metalloproteasePi-taOrbach et al., 2000
AVR1-CO39putative calcium binding proteinCo39Farman and Leong, 1998
PWL1a novel protein with 147 amino acidsNAKang et al., 1995
PWL2a glycine-rich, hydrophilic protein with a putative secretion signal sequenceNASweigard et al., 1995
ACE1a putative hybrid between a polyketide synthase and a nonribosomal peptide synthetasePi33Bohnert et al., 2004
AVR-Pizta predicted secreted proteinPiZtLi et al., 2009
Tab.1  Summary of molecularly characterized avirulence genes in races of
Fig.6  Micro chamber method to evaluate reactions to sheath blight pathogen
Note: Rice seedlings at three to four leaf stages were inoculated with PDA agarose blocks that contain actively grown mycelia (a). An enlarged agarose block that contains mycelia (b) and inoculated plants shown in (a) were covered by soft drink bottles with bottoms removed (c). Disease is rated 3-5 days after inoculation using a rating scale described in Jia et al. ().
yearmapping populationmolecular markersShB-QTLschromosomeLOD valuea)related tob)references
1995Lemont/Teqing F4 bulk113 RFLPQSbr2a, QSbr3a, QSbr4a, QSbr8a, QSbr9a, QSbr12a2, 3, 4, 8, 9, 12 ≥ 2.4Li et al., 1995
1999Lemont/Jasmine 85 DH lines94 RFLP+ SSRqSB-2, qSB-3, qSB-72, 3, 7 > 2.0×Pan et al., 1999
2000Lemont/Jasmine 85 F2118 RFLP+ SSRqSB-2, qSB-3, qSB-7, qSB-9-2, qSB-9-1, qSB-112, 3, 7, 9, 11 ≥ 2.0××Zou et al., 2000
2002Zhaiyeqing 8/Jingxi 17 DH linesqSB-2, qSB-3, qSB-7, qSB-112, 3, 7, 11 ≥ 2.0Kunihiro et al., 2002
2002Zhenshan 97/Minghui 63 F11-12 RILsRFLP+ SSRqSB-5, qSB-95, 9 ≥ 2.0Han et al., 2002
2003XZX19/4001(transgenic) F2RFLP+ SSRRsb15Che et al., 2003
2004WSS2/Hinohikari (SB resistance from Tetep) BC1F1201 SSR+ STSqSB-3, qSB-123, 12 ≥ 3.0Sato et al., 2004
2005Lemont/Teqing, F10-11 RILs173 RFLPqSB-1, qSB-2, qSB-3-1, qSB-3-2, qSB4-1, qSB4-2, qSB-5, qSB-6-1, qSB-6-2, qSB-7, qSB-8-1, qSB-8-2, qSB-9, qSB-10, qSB-121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12 ≥ 2.4××Pinson et al., 2005
2005Lemont/Teqing F2SSRqSB-9,qSB-119, 11 ≥ 2.0Tan et al., 2005
2007Lemont/Teqing BC4F1IndelqSB11Le11Zuo et al., 2007
2009Rosemont/Pecos F2:3149 SSRFour ShB-QTLs1, 2, 3, 9 ≥ 3.6Sharma et al., 2009
2009Lemont/Jasmine 85 F5 RILs199 SSRqShB1, qShB2-1, qShB2-2, qShB3-1, qShB5, qShB6, qShB9-1, qShB9-21, 2, 3, 5, 6, 9 ≥ 2.4Liu et al., 2009
Tab.2  Summary of historical effort on the identification of quantitative trait loci responsible for sheath blight resistance in rice
1 Ashikawa I, Hayashi N, Yamane H, Kanamori H, Wu J, Matsumoto T, Ono K, Yano M (2008). Two adjacent nucleotide-binding site-leucine-rich repeat class genes are required to confer Pikm-specific rice blast resistance. Genetics , 180: 2267-2276
doi: 10.1534/genetics.108.095034
2 Ballini E, Morel J B, Droc G, Price A, Courtois B, Notteghem J L, Tharreau D (2008). A genome-wide meta-analysis of rice blast resistance genes and quantitative trait loci provides new insights into partial and complete resistance. Mol Plant-Microbe Interact , 21: 859-868
doi: 10.1094/MPMI-21-7-0859
3 Bohnert H U, Fudal I, Dioh W, Tharreau D, Notteghem J L, Lebrun, M H (2004). A putative polyketide synthase/peptide synthetase from Magnaporthe grisea signals pathogen attack to resistant rice. Plant Cell , 16: 2499-2513
doi: 10.1105/tpc.104.022715
4 Bowen P, Menzies J, Ehret D (1992). Soluble silicon sprays inhibit powdery mildew development on grape leaves. Journal of the American Society for Horticultural Science , 117: 906-912
5 Brooks S A (2007). Sensitivity to a host-selective toxin from Rhizoctonia solani correlates with sheath blight susceptibility in rice. Phytopathology , 97: 1207-1212
doi: 10.1094/PHYTO-97-10-1207
6 Bryan G T, Wu K, Farrall L, Jia Y, Hershey H P, McAdams S A, Faulk K N, Donaldson G K, Tarchini R, Valent B (2000). A single amino acid difference distinguishes resistant and susceptible alleles of rice blast resistance gene Pi-ta. Plant Cell , 12: 2033-2045
7 Che K P, Zhan Q C, Xing Q H, Wang Z P, Jin D M, He D J, Wang B (2003). Tagging and mapping of rice sheath blight resistance gene. Theor Appl Genet , 106: 293-297
8 Chen C Q, Belanger R R, Benhamous N, Paulitz T C (1998). Induced systemic resistance by Pseudomonas spp. impairs pre-and post-infection development of Pythium aphanidermatum on cucumber roots. Eur J Plant Pathol , 104: 877-886
doi: 10.1023/A:1008613003951
9 Chen X W, Shang J J, Chen D X, Lei C L, Zou Y, Zhai W X, Liu G Z, Xu J C, Ling Z Z, Cao G, Ma B T, Wang Y P, Zhao X F, Li S G, Zhu L H (2006). A B-lectin receptor kinase gene conferring rice blast resistance. Plant J , 46: 794-804
doi: 10.1111/j.1365-313X.2006.02739.x
10 Dann E K, Deverall B J (1995). Effectiveness of systemic resistance in bean against foliar and soilborne pathogens as induced by biological and chemical means. Plant Pathol , 44: 458-466
doi: 10.1111/j.1365-3059.1995.tb01668.x
11 Dioh W, Tharreau D, Notteghem J L, Orbach M, Lebrun M H (2000). Mapping of avirulence genes in the rice blast fungus, Magnaporthe grisea, with RFLP and RAPD markers. Mol Plant-Microbe Interact , 13: 217-227
doi: 10.1094/MPMI.2000.13.2.217
12 Eizenga G C, Agama H A, Lee F N, Jia Y (2006). Identifying novel resistance genes in newly introduced blast resistant rice germplasm. Crop Sci , 46: 1870-1878
doi: 10.2135/cropsci2006.0143
13 Eizenga G C, Agrama H A, Lee F N, Jia Y (2009). Exploring genetic diversity and potential novel disease resistance genes in a collection of rice wild relatives. Genet Resour Crop Evol , 56: 65-76
doi: 10.1007/s10722-008-9345-7
14 Farman M L, Leong S A (1998). Chromosome walking to the AVR1-CO39 avirulence gene of Magnaporthe grisea: Discrepancy between the physical and genetic maps. Genetics , 150: 1049-1058
15 Fjellstrom R G, Conaway-Bormans C A, McClung A M, Marchetti M A, Shank A R, Park W D (2004). Development of DNA markers suitable for marker assisted selection of three Pi genes conferring resistance to multiple Pyricularia grisea pathotypes. Crop Sci , 44: 1790-1798
16 Flor H H (1971). Current status of the gene-for-gene concept. Annu Rev Phytopathol , 9: 275-296
doi: 10.1146/
17 Gibbons J W, Moldenhauer K A K, Gravois K A, Lee F N, Bernhardt J L, Meullenet J F, Bryant R J, Anders M, Norman R J, Cartwright K, Taylor K, Bullock J, Blocker M M (2006). Registration of 'Cybonnet' Rice. Crop Sci , 46: 2317–2318
doi: 10.2135/cropsci2006.03.0173
18 Gravois K A, Moldenhauer K A K, Lee F N, Norman R J, Helms R S, Bernhardt J L, Wells B R, Dilday R H, Rohman P C, Blocker M M (1995). Registration of ‘Kaybonnet’ rice. Crop Sci , 35: 586-587
19 Han Y P, Xing Y Z, Chen Z X, Gu S L, Pan X B, Chen X L, Zhang Q F (2002). Mapping QTL for horizontal resistance to sheath blight in an elite restorer line Minghui 63. Chin J Genet , 29: 622-626 (in Chinese)
20 Hayashi K, Yoshida H (2009). Refunctionalization of the ancient rice blast disease resistance gene Pit by the recruitment of a retrotransposon as a promoter. Plant J , 57: 413-425
doi: 10.1111/j.1365-313X.2008.03694.x
21 Howard R, Ferrari J, Roach M A, Roach D H, Money N P (1991). Penetration of hard substrates by a fungus employing enormous turgor pressures. Proc Natl Acad Sci USA , 88: 11281-11284
doi: 10.1073/pnas.88.24.11281
22 Jia Y, Bryan G, Farrall L, Valent B (2003). Natural variation at the Pi-ta rice blast resistance locus. Phytopathology , 93: 1452-1459
doi: 10.1094/PHYTO.2003.93.11.1452
23 Jia Y, Correa-Victoria F J, McClung A, Zhu L, Liu G, Wamishe Y, Xie J, Marchetti M A, Pinson S R M, Rutger J N, Correll J C (2007). Rapid determination of rice cultivar responses to the sheath blight pathogen Rhizoctonia solani using a micro-chamber screening method. Plant Dis , 91: 485-489
doi: 10.1094/PDIS-91-5-0485
24 Jia Y, Martin R (2008) Identification of a new locus, Ptr(t), required for rice blast resistance gene Pi-ta-mediated resistance. Mol Plant Microbe Interact , 21: 396-403
doi: 10.1094/MPMI-21-4-0396
25 Jia Y, McAdams S, Bryan G, Hershey H, Valent B (2000). Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. EMBO J , 19: 4004-4014
doi: 10.1093/emboj/19.15.4004
26 Jia Y, Redus M, Wang Z, Rutger J N (2004). Development of a SNLP marker from the Pi-ta blast resistance gene by tri-Primer PCR. Euphytica , 138: 97-105
doi: 10.1023/B:EUPH.0000047079.42768.4d
27 Jia Y, Wang Z, Singh P (2002). Development of dominant rice blast resistance Pi-ta gene markers. Crop Sci , 42: 2145-2149
28 Jia Y, Zhou E, Winston E, Singh P, Correll J, Lee F N, Valent B (2006). Molecular co-evolution of the rice Pi-ta resistance gene and Magnaporthe oryzae avirulence gene AVR-Pita. In: Sanchez F, Quinto C, Lopez-Lara I M, Geiger O, eds. Biology of Plant-Microbe Interactions, Vol. 5, 12th Intern Symp Plant-Microbe Interact, IS-MPMI, St. Paul, USA , 325-331
29 Kang S, Lebrun M H, Farrall L, Valent B (2001). Gain of virulence caused by insertion of a Pot3 transposon in a Magnaporthe grisea avirulence gene. Mol Plant-Microbe Interact , 14: 671-674
doi: 10.1094/MPMI.2001.14.5.671
30 Kang S, Sweigard J A, Valent B (1995). The PWL host specificity gene family in the blast fungus Magnaporthe grisea. Mol Plant-Microbe Interact , 8: 939-948
31 Kankanala P, Czymmek K, Valent B (2007). Roles for rice membrane dynamics and plasmodesmata during biotrophic invasion by the blast fungus. Plant Cell , 19: 706-724
doi: 10.1105/tpc.106.046300
32 Khang C H, Park S Y, Lee Y H, Valent B, Kang S (2008). Genome organization and evolution of the AVR-Pita avirulence gene family in the Magnaporthe grisea species complex. Mol Plant-Microbe Interact , 21: 658-670
doi: 10.1094/MPMI-21-5-0658
33 Khush G, Jena K (2007). Current status and future prospects of research on blast disease in rice (Oryza sativa). Oral presentation at the 4th international rice blast conference, Changsha, China
34 Kunihiro Y, Qian Q, Sato H, Teng S, Zeng D L, Fujimoto K, Zhu L H (2002). QTL analysis of sheath blight resistance in rice (Oryza sativa L.). Chin J Genet , 29: 50-55 (in Chinese)
35 Lee S K, Song M Y, Seo Y S, Kim H K, Ko S, Cao P J, Suh J P, Yi G, Roh J H, Lee S, An G, Hahn T R, Wang G L, Ronald P, Jeon J S (2009). Rice Pi5-mediated resistance to Magnaporthe oryzae requires the presence of two coiled-coil-nucleotide-binding-leucine-rich repeat genes. Genetics , 181: 1627-1638
doi: 10.1534/genetics.108.099226
36 Li B, Wang J, Wu Y, Hu X, Zhang Z, Zhang Q, Zhao Q, Feng H, Zhang Z, Wang G L, Wang G, Lu B, Han Z, Wang Z, Zhou B (2009). The Magnaporthe oryzae avirulence gene AvrPiz-t encodes a predicted secreted protein that triggers the immunity in rice mediated by the blast resistance gene Piz-t. Mol Plant-Microbe Interact , 22: 411-420
doi: 10.1094/MPMI-22-4-0411
37 Li Z K, Pinson S R M, Marchetti M A, Stansel J W, Park W D (1995). Characterization of quantitative trait loci (QTL) in cultivated rice contributing to field resistance to sheath blight (Rhizoctonia solani). Theor Appl Genet , 91: 382-388
doi: 10.1007/BF00220903
38 Lin F, Chen S, Que Z Q, Wang L, Liu X Q, Pan Q H (2007). The blast resistance gene Pi37 encodes a nucleotide binding site-leucine-rich repeat protein and is a member of a resistance gene cluster on rice chromosome 1. Genetics , 177: 1871-1880
doi: 10.1534/genetics.107.080648
39 Liu G, Jia Y, Correa-Victoria F J, Prado G A, Yeater K M, McClung A, Correll J C (2009). Mapping quantitative trait loci responsible for resistance to sheath blight in rice. Phytopathology , (in press)
40 Liu X Q, Lin F, Wang L, Pan Q H (2007). The in silico map-based cloning of Pi36, a rice coiled-coil–nucleotide-binding site–leucine-rich repeat gene that confers race-specific resistance to the blast fungus. Genetics , 176: 2541-2549
doi: 10.1534/genetics.107.075465
41 Manosalva P, Davidson R, Hulbert S, Leung H, Leach J E (2009). Germin-like protein genes contribute to rice blast disease resistance governed by quantitative trait loci. Plant Physiol , 149: 286-296
doi: 10.1104/pp.108.128348
42 Martin G B, Bogdanove A J, Sessa G (2003) Understanding the functions of plant disease resistance proteins. Annual Review of Plant Biology , 54: 23-61
doi: 10.1146/annurev.arplant.54.031902.135035
43 McClung A M, Marchetti M, Webb B, Bollich C (1999). Registration of `Madison' Rice. Crop Sci , 39: 1256
44 Moldenhauer K A K, Gibbons J W, Anders M M, Lee F N, Bernhardt J L, Wilson C E, Cartwright R D, Norman R J, Blocker M M, Boyett V A, Talbert A C, Taylor K, Bulloch J M (2007a). Registration of ‘Spring’ Rice. Crop Sci , 47: 447-449
doi: 10.2135/cropsci2006.06.0418
45 Moldenhauer K A K, Gibbons J W, Lee F N, Bernhardt J L, Wilson C E, Cartwright R D, Anders M M, Norman R J, Blocker M M, Boyett V A, Tolbert A C, Taylor K, Bulloch J M (2007b). Registration of ‘Banks’ Rice. Crop Sci , 47: 445-446
doi: 10.2135/cropsci2006.06.0416
46 Moldenhauer K A K, Gravois K A, Lee F N, Norman R J, Bernhardt J L, Well B R, Dilday R H, Blocker M M, Rohman P C, McMinn T A (1998). Registration of ‘Drew’ Rice. Crop Sci , 38: 896-897
47 Moldenhauer K A K, Lee F N, Gibbons J W, Bernhardt J L, Norman R J, Slaton N A, Wilson C E, Cartwright R D, Anders M M, Blocker M M, Tolbert A C, Bulloch J M (2007c). Registration of ‘Ahrent’ Rice. Crop Sci , 47: 446-447
doi: 10.2135/cropsci2006.06.0415
48 Moldenhauer K A K, Lee F N, Norman R J, Helms R S, Well R H, Dilday R H, Rohman P C, Marchetti M A (1990). Registration of ‘Katy’ Rice. Crop Sci , 30: 747-748
49 Orbach M J, Farrall L, Sweigard J A, Chumley F G, Valent B (2000). A telomeric avirulence gene determines efficacy for the rice blast resistance gene Pi-ta. Plant Cell , 12: 2019-2032
50 Pan X B, Zou J H, Chen Z X, Lu J F, Yu H X, Li H T, Wang Z B, Rush M C, Zhu L H (1999). Mapping the QTLs responsible for sheath blight resistance from rice cultivar Jasmine 85. Chinese Science Bulletin , 44: 1629-1635 (in Chinese)
51 Pinson S R M, Capdevielle F M, Oard J H (2005). Confirming QTL and finding additional loci conditioning sheath blight resistance in rice using recombinant inbred lines. Crop Sci , 45: 503-510
52 Prasad B, Eizenga G C (2008). Rice sheath blight resistance identified in Oryza spp. accessions. Plant Dis , 92: 1503-1509
doi: 10.1094/PDIS-92-11-1503
53 Qu S H, Liu G F, Zhou B, Bellizzi M, Zeng L R, Dai L Y, Han B, Wang G L (2006). The broad-spectrum blast resistance gene Pi9 encodes a nucleotide-binding site-leucine-rich repeat protein and is a member of multigene family in rice. Genetics , 172: 1901-1914
doi: 10.1534/genetics.105.044891
54 Sato H, Ideta O, Ando I, Kunihiro Y, Hirabayashi H, Iwano M, Miyasaka A, Nemoto H, Imbe T (2004). Mapping QTL for sheath blight resistance in the rice line WSS2. Breed Sci , 54: 265-271
doi: 10.1270/jsbbs.54.265
55 Savary S, Teng P S, Willocquet L, Nutter F W Jr (2006). Quantification and modeling of crop losses: A review of purposes. Ann Rev Phytopathol , 44: 89-112
doi: 10.1146/annurev.phyto.44.070505.143342
56 Savary S, Willocquet L, Elazegui F A, Castilla N, Teng P S (2000). Rice pest constraints in tropical Asia: Quantification of yield losses due to rice pests in a range of production situations. Plant Dis , 84: 357-369
doi: 10.1094/PDIS.2000.84.3.357
57 Sharma A, McClung A M, Pinson S R M, Kepiro J L, Shank A R, Tabien R E, Wang Y, Fjellstrom R G (2009) Genetic mapping of sheath blight resistance QTL within tropical japonica rice cultivars. Crop Sci , 49: 256-264
doi: 10.2135/cropsci2008.03.0124
58 Silue D, Notteghem J L, Tharreau D (1992). Evidence for a gene for gene relationship in the Oryza sativa-Magnaporthe grisea pathosystem. Phytopathology , 82: 577-582
doi: 10.1094/Phyto-82-577
59 Sweigard J A, Carroll A M, Kang S, Farrall L, Chumley F G, Valent B (1995). Identification, cloning, and characterization of PWL2, a gene for host species specificity in the rice blast fungus. Plant Cell , 7: 1221-1233
60 Tan C X, Ji X M, Yang Y, Pan X Y, Zuo S M, Zhang Y F, Zou J H, Chen Z X, Zhu L H, Pan X B (2005). Identification and marker-assisted selection of two major quantitative genes controlling rice sheath blight resistance in backcross generations. Chin J Genet , 32: 399-405 (in Chinese)
61 Venu R C, Jia Y, Gowda M, Jia M H, Jantasuriyarat C, Stahlberg E, Li H, Rhineheart A, Boddhireddy P, Singh P, Rutger N, Kudrna D, Wing R, Nelson J C, Wang G L (2007). RL-SAGE and microarray analysis of the rice transcriptome after Rhizoctonia solani infection. Molecular Genetics and Genomics , 278: 421-431
doi: 10.1007/s00438-007-0260-y
62 Wamishe Y A, Jia Y, Singh P, Cartwright R D (2007). Identification of field isolates of Rhizoctonia solani to detect quantitative resistance in rice under greenhouse conditions. Front Agric China , 1: 361-367
doi: 10.1007/s11703-007-0061-4
63 Wang X, Jia Y, Shu Q Y, Wu D (2008). Haplotype diversity at the Pi-ta locus in cultivated rice and its wild relatives. Phytopathology , 98: 1305-1311
doi: 10.1094/PHYTO-98-12-1305
64 Wang X, Yano M, Yamanouchi U, Iwamoto M, Monna L, Hayasaka H, Katayose Y, Sasaki T (1999). The Pi-b gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes. The Plant J , 19: 55-64
doi: 10.1046/j.1365-313X.1999.00498.x
65 Wang Z H, Jia Y L, Lin H, Valent B, Rutger J (2007a). Host active defense responses occur within 24 hours after pathogen inoculation in the rice blast system. Rice Sci , 14: 302-310
doi: 10.1016/S1672-6308(08)60009-8
66 Wang Z, Jia Y, Rutger J N, Xia Y (2007b). Rapid survey for presence of a blast resistance gene Pi-ta in rice cultivars using the dominant DNA markers derived from portions of the Pi-ta gene. Plant Breed , 126: 36-42
doi: 10.1111/j.1439-0523.2007.01304.x
67 Yamamoto T, Lin H X, Sasaki T, Yano M (2000) Identification of heading date quantitative trait locus Hd6 and characterization of its epistatic interactions with Hd2 in rice. Genetics , 154: 885-891
68 Yano M, Harushima Y, Nagamura Y, Kurata N, Minobe Y, Sasaki T (1997) Identification of quantitative trait loci controlling heading date of rice using a high-density linkage map. Theor Appl Genet , 95: 1025-1032
doi: 10.1007/s001220050658
69 Yi M, Chi M H, Khang C H, Park S Y, Kang S, Valent B, Lee Y H (2009). The ER chaperone LHS1 is involved in asexual development and rice infection by the blast fungus Magnaporthe oryzae. Plant Cell , (
70 Zhou B, Qu S H, Liu G F, Dolan M, Sakai H, Lu G D, Bellizzi M, Wang G L (2006). The eight amino acid differences within three leucine-rich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnaporthe grisea. Mol Plant-Microbe Interact , 19: 1216-1228
doi: 10.1094/MPMI-19-1216
71 Zhou E X, Jia Y L, Singh P, Correll J C, Lee F N (2007). Instability of the Magnaporthe oryzae avirulence gene AVR-Pita alters virulence. Fungal Genet Biol , 44: 1024-1034
doi: 10.1016/j.fgb.2007.02.003
72 Zou J H, Pan X B, Chen Z X, Xu J Y, Lu J F, Zhai W X, Zhu L H (2000). Mapping quantitative trait loci controlling sheath blight resistance in two rice cultivars (Oryza sativa L.). Theor Appl Genet , 101: 569-573
doi: 10.1007/s001220051517
73 Zou Q (2001). Experiment Guide for Plant Physiology. Beijing: China Agricultural Press, 131-135 (in Chinese)
74 Zuo S M, Yin Y J, Zhang L, Zhang Y F, Chen Z X, Pan X B (2007). Breeding value and further mapping of a QTL qSB-11 conferring the rice sheath blight utilized resistance. Chin J Rice Sci , 21: 136-142 (in Chinese)
[1] Chunying MA, Chunsheng LIU, Wenquan WANG. Molecular cloning and characterization of GuHMGR, an HMG-CoA reductase gene from liquorice (Glycyrrhiza uralensis)[J]. Front Agric Chin, 2011, 5(3): 400-406.
[2] Shenghui LI, Fengru WANG, Jingao DONG. A proteomic approach to investigating the promotive effects of brassinolide on root growth of rice seedlings[J]. Front Agric Chin, 2011, 5(2): 146-151.
[3] Saeed ARSHAD, Ahsan IQBAL, Sehar NAWAZ, Nisar AHMED. Genetic diversity studies of coarse and fine rice using RAPD markers[J]. Front Agric Chin, 2011, 5(2): 129-134.
[4] Jian XIE, Xue WU, Jianjun TANG, Jiaen ZHANG, Xin CHEN. Chemical fertilizer reduction and soil fertility maintenance in rice–fish coculture system[J]. Front Agric Chin, 2010, 4(4): 422-429.
[5] Xiaoliang XIANG, Shuju NING, Xia JIANG, Xiaogui GONG, Renlei ZHU, Lanfang ZHU, Daozhi WEI. Protein extraction from rice (Oryza sativa L.) root for two-dimensional electrophresis[J]. Front Agric Chin, 2010, 4(4): 416-421.
[6] Yulin LIAO, Shengxian ZHENG, Yanhong LU, Zengping YANG, Jun NIE, Jian XIE. Long-term effect of fertilizer application on rice yield, potassium uptake in plants, and potassium balance in double rice cropping system[J]. Front Agric Chin, 2010, 4(4): 406-415.
[7] Donglai XIAO, Weiming LI, Taiyun WEI, Zujian WU, Lianhui XIE. Advances in the studies of Rice stripe virus[J]. Front. Agric. China, 2010, 4(3): 287-292.
[8] Piebiep GOUFO, Meiyang DUAN, Xiangru TANG, Sugunya WONGPORNCHAI. Some factors affecting the concentration of the aroma compound 2-acetyl-1-pyrroline in two fragrant rice cultivars grown in South China[J]. Front. Agric. China, 2010, 4(1): 1-9.
[9] Zhenlong XU, Chengsheng MENG, Chengjin GUO, Hairong XU, Kai XIAO, Yanzhen ZHOU, Wenjing LU, Juntao GU, . Characterization of promoter expression patterns of OsNrt2.1 , a nitrate transporter gene of rice ( Oryza sativa L.)[J]. Front. Agric. China, 2009, 3(4): 402-412.
[10] Suriyan CHA-UM, Souvanh THADAVONG, Chalermpol KIRDMANEE. Effects of mannitol induced osmotic stress on proline accumulation, pigment degradation, photosynthetic abilities and growth characters in C3 rice and C4 sorghum[J]. Front Agric Chin, 2009, 3(3): 266-273.
[11] Yawen ZENG, Shuming YANG, Juan DU, Xiaoying PU, Hongliang ZHANG, Zichao LI, Luxiang WANG, Jiafu LIU, Fenghui XIAO. Correlation between allele sizes of microsatellites and phenotypic variations in rice landraces[J]. Front Agric Chin, 2009, 3(2): 130-139.
[12] Shaochuan ZHOU, Decheng LU, Hong LI, Daoqiang HUANG, Ruowei MIAO. Research on the development of weed-suppressing rice varieties[J]. Front Agric Chin, 2009, 3(1): 29-33.
[13] LIU Qiongguang, ZHANG Jingyi, WANG Yutao, WANG Zhenzhong, HE Landi. Reactive oxygen species activity in the interaction of rice with pv. [J]. Front. Agric. China, 2008, 2(4): 441-445.
[14] CAO Yunfei, WANG Jiaojiao, GUO Li, XIAO Kai. Identification, characterization and expression analysis of transcription factor () genes in rice ( L.)[J]. Front. Agric. China, 2008, 2(3): 253-261.
[15] LIU Kai, TANG Cheng, WANG Zhiqin, YANG Jianchang, YE Yuxiu. Responses of ethylene and ACC in rice grains to soil moisture and their relations to grain filling[J]. Front. Agric. China, 2008, 2(2): 172-180.
Full text