Please wait a minute...
Frontiers of Agriculture in China

ISSN 1673-7334

ISSN 1673-744X(Online)

CN 11-5729/S

Front Agric Chin    2009, Vol. 3 Issue (3) : 266-273     DOI: 10.1007/s11703-009-0063-5
RESEARCH ARTICLE |
Effects of mannitol induced osmotic stress on proline accumulation, pigment degradation, photosynthetic abilities and growth characters in C3 rice and C4 sorghum
Suriyan CHA-UM1(), Souvanh THADAVONG2, Chalermpol KIRDMANEE1
1. National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Klong Laung 12120, Thailand; 2. Agriculture Research Center, National Agriculture and Forestry Research Institute, Vientiane, Laos
Download: PDF(189 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract  

Osmotic stress is one of the most important abiotic factors which inhibit growth and development in both the vegetative and reproductive stages of many plant species. The aim of this investigation was to compare the biochemical and physiological responses in C3 rice and C4 sorghum to water deficit. Chlorophyll a (Chla), chlorophyll b (Chlb), total chlorophyll (TC) and total carotenoid (Cx+c) contents in both rice and sorghum seedlings under osmotic stress were adversely affected, related to increasing osmotic pressure in the culture media. In addition, the chlorophyll’s fluorescence parameters and net photosynthetic rate (Pn) decreased, leading to growth reduction. Also, a positive correlation was found between physiological and biochemical data, while proline accumulation showed a negative relationship. The Chlb, Pn and fresh weight were maintained better in osmotic-stressed (-1.205 MPa) C4 sorghum seedlings than those in C3 rice seedlings. The growth and physiological responses of C3 rice and C4 sorghum decreased depending on the plant species, the osmotic pressure in the media and their interactions. Pigment content and Pn ability in C4 sorghum grown under mannitol-induced osmotic stress increased to a greater degree than in C3 rice, resulting in maintenance of growth.

Keywords chlorophyll a fluorescence      net photosynthetic rate      Oryza sativa L.      pigment degradation      Sorghum bicolor (L.) M?ench      water deficit stress     
Corresponding Authors: CHA-UM Suriyan,Email:suriyanc@biotec.or.th   
Issue Date: 05 September 2009
URL:  
http://academic.hep.com.cn/fag/EN/10.1007/s11703-009-0063-5     OR     http://academic.hep.com.cn/fag/EN/Y2009/V3/I3/266
speciesosmotic potential/—MPaSH/cmRL/cmNLLA/cm2FW/mgDW/mg
rice0.23812.38a4.51b3.65ab20.17c806.7b85.1c
0.39212.38a4.40b3.65ab17.14c564.5c83.2c
0.67411.02ab4.39b3.50b16.72c443.2c74.0cd
0.93910.17b4.36b2.75cd12.93c437.7c72.1cd
1.2059.96b3.90b2.50d12.92c378.2c64.9d
sorghum0.2389.22bc10.72a4.20a62.01a1120.9a153.7a
0.3928.81bc9.93a4.15a54.95a1016.9a137.4a
0.6747.48c9.84a3.70ab36.42b843.2b122.4ab
0.9397.13c8.54a3.35b33.51b773.6b120.9ab
1.2057.04c8.23a3.30bc30.29b763.5b108.9b
significant level
plant************
osmo**********
plant ′osmo**********
Tab.1  Shoot height (SH), root length (RL), number of leaves (NL), leaf area (LA), fresh weight (FW) and dry weight (DW) of rice and sorghum seedlings exposed to mannitol induced osmotic stress for 14 days
speciesosmotic potential/—MPaChla/(μ?g-1 FW)Chlb/(μg?g-1 FW)TC/(μg?g-1 FW)Cx+c/(μg?g-1 FW)
rice0.238243.15a189.24a432.39a75.17a
0.392242.29a142.59b384.88b72.56a
0.674232.27a95.86c328.13c65.24ab
0.939183.83bc61.93d245.76def64.38ab
1.205172.97bc51.92de224.89ef52.73b
sorghum0.238195.58b73.92d269.50de54.96b
0.392200.40b77.48d277.88d50.29b
0.674209.58b70.00d279.58d47.30bc
0.939152.82c46.67de199.49f47.12bc
1.20599.32d33.44e132.76g35.83c
significant level
plant********
osmo********
plant ′osmo********
Tab.2  Chlorophyll a (Chl), chlorophyll b (Chl), total chlorophyll (TC) and total carotenoids (C) of rice and sorghum seedlings exposed to mannitol induced osmotic stress for 14 days
speciesosmotic potential/—MPaFv/FmFPSIIproline/(μmol?g-1 FW)
rice0.2380.842a0.430a208.23e
0.3920.841a0.424ab257.12e
0.6740.828a0.411ab496.84d
0.9390.823a0.373b763.48c
1.2050.729b0.361b1532.28a
sorghum0.2380.817a0.465a158.12f
0.3920.802a0.459a130.99g
0.6740.789ab0.437a304.17e
0.9390.744b0.415ab585.46d
1.2050.744b0.368b1030.43b
significant level
plant******
osmo****
plant ′osmo******
Tab.3  Maximum quantum yield of PSII (/), photon yield of PSII (F), net photosynthetic rate () and proline contents of rice and sorghum seedlings exposed to mannitol induced osmotic stress for 14 days
parameterChlaChlbTCCx+cFv/FmFPSIIPnproline
Chla1
Chlb0.714**1
TC0.920**0.931**1
Cx+c0.667**0.502**0.628**1
Fv/Fm0.411**0.355**0.413**-0.274**1
FPSII0.193*0.199*0.282*0.0270.455**1
Pn0.522**0.536**0.571**0.1680.292**0.304**1
proline-0.548**-0.483**-0.555**-0.228*-0.354**-0.394**-0.878**1
Tab.4  Relationship between physiological and biochemical parameters of rice and sorghum seedlings exposed to mannitol induced osmotic stress for 14 days
Fig.1  Relationship between chlorophyll a degradation and maximum quantum yield of PSII (/)
Note: Rice (a) and sorghum (b) seedlings exposed to mannitol induced osmotic stress for 14 days. Error bars represent ±.
Fig.2  Relationship between total chlorophyll degradation and photon yield of PSII (F)
Note: Rice (a) and sorghum (b) seedlings exposed to mannitol induced osmotic stress for 14 days. Error bars represent ±.
Fig.3  Net photosynthetic rate ()
Note: Rice and sorghum seedlings exposed to mannitol induced osmotic stress for 14 days. Error bars represent ±.
Fig.4  Relationship between photon yield of PSII (F) and net photosynthetic rate ()
Note: Rice (a) and sorghum (b) seedlings exposed to mannitol induced osmotic stress for 14 days. Error bars represent ±.
Fig.5  Relationship between net photosynthetic rate () and plant dry weight
Note: Rice (a) and sorghum (b) seedlings exposed to mannitol induced osmotic stress for 14 days. Error bars represent ±.
1 Agarie S, Miura A, Sumikura R, Tsukamoto S, Nose A, Arima S, Matsuoka M, Miyao-Tokutomi M (2002). Overexpression of C4 PEPC caused O2-insensitive photosynthesis in transgenic rice plants. Plant Science , 162: 257-265
doi: 10.1016/S0168-9452(01)00572-6
2 Ali M H, Talukder M S U (2008). Increasing water productivity in crop production—A synthesis. Agricultural Water Management , 95: 1201-1213
doi: 10.1016/j.agwat.2008.06.008
3 Ashraf M, Foolad M R (2007). Roles of glycinebetaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany , 59: 206-216
doi: 10.1016/j.envexpbot.2005.12.006
4 Bandyopadhyay A, Datta K, Zhang J, Yang W, Raychaudhuri S, Miyao M, Datta S K (2007). Enhanced photosynthesis rate in genetically engineered indica rice expressing pepc gene cloned from maize. Plant Science , 172: 1204-1209
doi: 10.1016/j.plantsci.2007.02.016
5 Barnabás B, J?ger K, Fahér A (2008). The effect of drought and heat stress on reproductive processes in cereals. Plant, Cell and Environment , 31: 11-38
6 Bates L S, Waldren R P, Teare I D (1973). Rapid determination of free proline for water-stress studies. Plant and Soil , 39: 205-207
doi: 10.1007/BF00018060
7 Bloch D, Hoffmann C M, M?rl?nder B (2006). Impact of water supply on photosynthesis, water use and carbon isotope discrimination of sugar beet genotypes. European Journal of Agronomy , 24: 218-225
doi: 10.1016/j.eja.2005.08.004
8 Blum A (2005). Drought resistance, water-use efficiency, and yield potential-are they compatible, dissonant, or mutually exclusive? Australian Journal of Agricultural Research , 56: 1159-1168
doi: 10.1071/AR05069
9 Buchanan C D, Lim S, Salzman R A, Kagiampakis I, Morishige D T, Weers B D, Klein R R, Pratt L H, Cordonnier-Pratt M M, Klein P E, Mullet J E (2005). Sorghum bicolor’s transcriptome response to dehydration, high salinity and ABA. Plant Molecular Biology , 58: 699-720
doi: 10.1007/s11103-005-7876-2
10 Cattivelli L, Rizza F, Badeck F W, Mazzucotelli E, Mastrangelo A N, Francia E, Marè C, Tondelli A, Stanca A M (2008). Drought tolerance improvement in crop plants: An integrated view from breeding to genomics. Field Crops Research , 105: 1-14
doi: 10.1016/j.fcr.2007.07.004
11 Cha-um S, Kirdmanee C (2008). Effect of osmotic stress on proline accumulation, photosynthetic abilities and growth characters of sugarcane plantlets (Saccharum officinarum L.). Pakistan Journal of Botany , 40: 2541-2552
12 Cha-um S, Kirdmanee C (2009). Proline accumulation, photosynthetic abilities and growth characters of sugarcane (Saccharum officinarum L.) plantlets in response to iso-osmotic salt and water-deficit stress. Agricultural Sciences in China , 8: 51-58
doi: 10.1016/S1671-2927(09)60008-0
13 Cha-um S, Supaibulwatana K, Kirdmanee C (2006). Water relation, photosynthetic ability, and growth of Thai jasmine rice (Oryzasativa L. ssp. indica cv. KDML105) to salt stress by application of exogenous glycinebetaine and choline. Journal of Agronomy and Crop Science , 192: 25-36
doi: 10.1111/j.1439-037X.2006.00186.x
14 Cha-um S, Supaibulwatana K, Kirdmanee C (2007). Glycinebetaine accumulation, physiological characterizations, and growth efficiency in salt tolerant and salt sensitive lines of indica rice (Oryza sativa L. spp. indica) response to salt stress. Journal of Agronomy and Crop Science , 193: 157-166
doi: 10.1111/j.1439-037X.2007.00251.x
15 Chaves M M, Maroco J P, Pereira J S (2003). Understanding plant responses to drought—from genes to the whole plant. Functional Plant Biology , 30: 239-264
doi: 10.1071/FP02076
16 Chaves M M, Oliveira M M (2004). Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. Journal of Experimental Botany , 55: 2365-2384
doi: 10.1093/jxb/erh269
17 Chi W, Zhou J S, Zhang F, Wu N H (2004). Photosynthetic feature of transgenic rice expressing sorghum C4 type NADP-ME. Acta Botanica Sinica , 46: 873-882
18 Choudhury B J (2001). Modeling radiation- and carbon-use efficiencies of maize, sorghum, and rice. Agricultural and Forest Meteorology , 106: 317-330
doi: 10.1016/S0168-1923(00)00217-3
19 Costa J H, Jolivet Y, Hasenfratz-Sauder M P, Orellano E G, Lima M G S, Dizengremel P, de Melo D F (2007). Alternative oxidase regulation in roots of Vigna unguiculata cultivars differing in drought/salt tolerance. Journal of Plant Physiology , 164: 718-727
doi: 10.1016/j.jplph.2006.04.001
20 Flexas J, Bota J, Loreto F, Cornic G, Sharkey T D (2004). Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biology , 6: 1-11
doi: 10.1055/s-2004-820867
21 Fujiwara K, Kozai T, Watanabe I (1987). Fundamental studies on environment in plant tissue culture vessels. (3) Measurements of carbondioxide gas concentration in closed vessels containing tissue cultured plantlets and estimates of net-photosynthetic rates of the plantlets. Journal of Agricultural Methodology , 4: 21-30 (in Japanese)
22 Fukai S, Cooper M (1995). Development of drought-resistant cultivars using physio-morphological traits in rice. Field Crops Research , 40: 67-86
doi: 10.1016/0378-4290(94)00096-U
23 Goff S A, Ricke D, Lan T H, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchison D, Martin C, Katagiri F, Lange B M, Moughamer T, Xia Y, Budworth P, Zhong J, Miguel T, Paszkowski U, Zhang S, Colbert M, Sun W L, Chen L, Cooper B, Park S, Wood T C, Mao L, Quail P, Wing R, Dean R, Yu Y, Zharkikh A, Shen R, Sahasrabudhe S, Thomas A, Cannings R, Gutin A, Pruss D, Reid J, Tavtigian S, Mitchell J, Eldredge G, Scholl T, Miller R M, Bhatnagar S, Adey N, Rubano T, Tusneem N, Robinson R, Feldhaus J, Macalma T, Oliphant A, Briggs S (2002). A draft sequence of the rice genome (Oryza sativa L. spp. japonica). Science , 296: 92-100
doi: 10.1126/science.1068275
24 Kamoshita A, Babu R C, Boopathi N M, Fukai S (2008). Phenotypic and genotypic analysis of drought-resistance traits for development of rice cultivars adapted to rain-fed environments. Field Crops Research , 109: 1-23
doi: 10.1016/j.fcr.2008.06.010
25 Khush G S (2005). What it will take to feed 5.0 billion rice consumers in 2030? Plant Molecular Biology , 59: 1-6
doi: 10.1007/s11103-005-2159-5
26 Kijne J W (2006). Abiotic stress and water scarcity: Identifying and resolving conflicts from plant level to global level. Field Crops Research , 97: 3-18
doi: 10.1016/j.fcr.2005.08.011
27 Lafitte H R, Yongsheng G, Yan S, Li Z K (2007). Whole plant responses, key processes, and adaptation to drought stress: the case of rice. Journal of Experimental Botany , 58: 169-175
doi: 10.1093/jxb/erl101
28 Lichtenthaler H K (1987). Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods in Enzymology , 148: 350-380
doi: 10.1016/0076-6879(87)48036-1
29 Loggini B, Scartazza A, Brugnoli E, Navari-Izzo F (1999). Antioxidant defense system, pigment composition, and photosynthetic efficiency in two wheat cultivars subjected to drought. Plant Physiology , 119: 1091-1099
doi: 10.1104/pp.119.3.1091
30 Maxwell K, Johnson G N (2000). Chlorophyll fluorescence-a practical guide. Journal of Experimental Botany , 51: 659-668
doi: 10.1093/jexbot/51.345.659
31 Murashige T, Skoog F (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum , 15: 473-497
doi: 10.1111/j.1399-3054.1962.tb08052.x
32 Nayyar H (2003). Accumulation of osmolytes and osmotic adjustment in water-stressed wheat (Triticum aestivum) and maize (Zea mays) as affected by calcium and its antagonists. Environmental and Experimental Botany , 50: 253-264
doi: 10.1016/S0098-8472(03)00038-8
33 Nayyar H, Gupta D (2006). Differential sensitivity of C3 and C4 plants to water deficit stress: Association with oxidative stress and antioxidants. Environmental and Experimental Botany , 58: 106-113
doi: 10.1016/j.envexpbot.2005.06.021
34 Neto N B A, Satornino S M, Bomfim D C, Cust?dio C C (2004). Water stress induced by mannitol and sodium chloride in soybean cultivars. Brazilian Archives of Biology and Technology , 47: 521-529
35 Passioura J (2006). Increasing crop productivity when water is scarce—from breeding to field management. Agricultural Water Management , 80: 176-196
doi: 10.1016/j.agwat.2005.07.012
36 Passioura J (2007). The drought environment: physical, biological and agricultural perspectives. Journal of Experimental Botany , 58: 113-117
doi: 10.1093/jxb/erl212
37 Paterson A H (2008). Genomics of sorghum. International Journal of Plant Genomics ,
doi: 10.1155/2008/362451
38 Paterson A H, Bowers J E, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, Schmutz J, Spannagl M, Tang H, Wang X, Wicker T, Bharti A K, Chapman J, Feltus F A, Gowik Udo, Grigoriev Igor V, Lyons Eric, Maher C A, Martis M, Narechania A, Otillar R P, Penning B W, Salamov A A, Wang Y, Zhang L, Carpita N C, Freeling M, Gingle A R, Hash C T, Keller B, Klein P, Kresovich S, McCann M C, Ming R, Peterson D G, Mehboob-ur-Rahman M, Ware D, Westhoff P, Mayer K F X, Messing J, Rokhsar D S (2009). The Sorghum bicolor genome and the diversification of grasses. Nature , 457: 551-556
doi: 10.1038/nature07723
39 Quarrie S A, Stojanovi? J, Peki? S (1999). Improving drought resistance in small-grained cereals: A case study, progress and prospects. Plant Growth Regulation , 29: 1-21
doi: 10.1023/A:1006210722659
40 Reddy A R, Chaitanya K V, Vivekanandan M (2004). Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. Journal of Plant Physiology , 161: 1189-1202
doi: 10.1016/j.jplph.2004.01.013
41 Ripley B S, Gilbert M E, Ibrahim D G, Osborne C P (2007). Drought constraints on C4 photosynthesis: stomatal and metabolic limitations in C3 and C4 subspecies of Alloterosis semialata. Journal of Experimental Botany , 58: 1351-1363
doi: 10.1093/jxb/erl302
42 Selote D S, Bharti S, Khanna-Chopra R (2004). Drought acclimation reduces O2ˉ accumulation and lipid peroxidation in wheat seedlings. Biochemical and Biophysical Research Communications , 314: 724-729
doi: 10.1016/j.bbrc.2003.12.157
43 Shabala S N, Shabala S I, Martynenko A I, Babourina O, Newman I A (1998). Salinity effect on bioelectric activity, growth, Na+ accumulation and chlorophyll fluorescence of maize leaves: a comparative survey and prospects for screening. Australian Journal of Plant Physiology , 25: 609-616
44 Shao H B, Chu L Y, Jaleel C A, Zhao C X (2008). Water-deficit stress-induced anatomical changes in higher plants. Comptes Rendus Biologies , 331: 215-225
doi: 10.1016/j.crvi.2008.01.002
45 Sharma A D, Kumar S, Singh P (2006). Expression analysis of a stress-modulated transcript in drought tolerant and susceptible cultivars of sorghum (Sorghum bicolor). Journal of Plant Physiology , 163: 570-576
doi: 10.1016/j.jplph.2005.06.011
46 Sinclair T R, Hammer G L, van Oosterom E J (2005). Potential yield and water-use efficiency benefits in sorghum from limited maximum transpiration rate. Functional Plant Biology , 32: 945-952
doi: 10.1071/FP05047
47 Slama I, Ghnaya T, Hessini K, Messedi D, Savouré A, Abdelly C (2007). Comparative study of the effects of mannitol and PEG osmotic stress on growth and solute accumulation in Sesuvium portulacastrum. Environmental and Experimental Botany , 61: 10-17
doi: 10.1016/j.envexpbot.2007.02.004
48 Suzuki S, Murai N, Arai J N (2000). Changes in photosynthetic carbon flow in transgenic rice plants that express C4-type phosphoenolpyruvate carboxykinase from Urochloa panicoides. Plant Physiology , 124: 163-172
doi: 10.1104/pp.124.1.163
49 Suzuki S, Murai N, Kasaoka K, Hiyoshi T, Imaseki H, Burnell J N, Arai M (2006). Carbon metabolism in transgenic rice plants that express phosphoenolpyruvate carboxylase and/or phosphoenolpyruvate carboxykinase. Plant Science , 170: 1010-1019
doi: 10.1016/j.plantsci.2006.01.009
50 Tonon G, Kevers C, Faivre-Rampant O, Graziani M, Gaspar T (2004). Effect of NaCl and mannitol iso-osmotic stresses on proline and free polyamine levels in embryogenic Fraxinus angustifolia callus. Journal of Plant Physiology , 161: 701-708
doi: 10.1078/0176-1617-01096
51 Wang J, Li R (2008). Integration of C4-specific ppdk gene of Echinochloa to C3 upland rice and its photosynthesis characteristics analysis. African Journal of Biotechnology , 7: 783-787
52 Xin Z, Aiken R, Burke J (2009). Genetic diversity of transpiration efficiency in sorghum. Field Crops Research , 111: 74-80
doi: 10.1016/j.fcr.2008.10.010
53 Yordanov I, Velikova V, Tsonev T (2003). Plant responses to drought and stress tolerance. Bulgarian Journal of Plant Physiology , 39: 187-206
54 Yu J, Hu S, Wang J, Wong G K, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X, Cao M, Liu J, Sun J, Tang J, Chen Y, Huang X, Lin W, Ye C, Tong W, Cong L, Geng J, Han Y, Li L, Li W, Hu G, Huang X, Li W, Li J, Liu Z, Li L, Liu J, Qi Q, Liu J, Li L, Li T, Wang X, Lu H, Wu T, Zhu M, Ni P, Han H, Dong W, Ren X, Feng X, Cui P, Li X, Wang H, Xu X, Zhai W, Xu Z, Zhang J, He S, Zhang J, Xu J, Zhang K, Zheng X, Dong J, Zeng W, Tao L, Ye J, Tan J, Ren X, Chen X, He J, Liu D, Tian W, Tian C, Xia H, Bao Q, Li G, Gao H, Cao T, Wang J, Zhao W, Li P, Chen W, Wang X, Zhang Y, Hu J, Wang J, Liu S, Yang J, Zhang G, Xiong Y, Li Z, Mao L, Zhou C, Zhu Z, Chen R, Hao B, Zheng W, Chen S, Guo W, Li G, Liu S, Tao M, Wang J, Zhu L, Yuan L, Yang H (2002). A draft sequence of the rice genome (Oryza sativa L. spp. indica). Science , 296: 79-92
doi: 10.1126/science.1068037
55 Zang X, Komatsu S (2007). A proteomic approach for identifying osmotic-stress-related proteins in rice. Phytochemistry , 68: 426-437
doi: 10.1016/j.phytochem.2006.11.005
56 Zhang Z, Shao H, Xu P, Chu L, Lu Z, Tian J (2007). On evolution and perspectives of bio-watersaving. Colloids and Surfaces B: Biointerfaces , 55: 1-9
doi: 10.1016/j.colsurfb.2006.10.036
[1] Xiaoliang XIANG, Shuju NING, Xia JIANG, Xiaogui GONG, Renlei ZHU, Lanfang ZHU, Daozhi WEI. Protein extraction from rice (Oryza sativa L.) root for two-dimensional electrophresis[J]. Front Agric Chin, 2010, 4(4): 416-421.
[2] Zipiao YE, Zehai ZHAO, . A modified rectangular hyperbola to describe the light-response curve of photosynthesis of Bidens pilosa L. grown under low and high light conditions[J]. Front. Agric. China, 2010, 4(1): 50-55.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed