Please wait a minute...
Frontiers of Agriculture in China

ISSN 1673-7334

ISSN 1673-744X(Online)

CN 11-5729/S

Front. Agric. China    2009, Vol. 3 Issue (4) : 374-382     DOI: 10.1007/s11703-009-0075-1
Research articles |
Evaluation of phenotype and genetic diversity of maize landraces from Hubei Province, Southwest China
Kai WEI1,Hao ZHANG2,Xianfeng XU2,Zuxin ZHANG2,Hewei DU3,Yiqin HUANG4,
1.College of Agronomy, Agricultural University of Hebei, Baoding 071001, China;Department of Life Sciences, Yangtze University, Jingzhou 434025, China; 2.College of Agronomy, Agricultural University of Hebei, Baoding 071001, China; 3.Department of Life Sciences, Yangtze University, Jingzhou 434025, China; 4.Academy of Agricultural Science of Hubei, Wuhan 430070, China;
Download: PDF(141 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract  The intelligent exploitation of maize landraces for maize breeding requires a detailed knowledge of genetic and historical relationships among these populations and an understanding of the partitioning of genetic diversity among populations. In this study, the diversity of 102 maize landraces from Hubei Province was evaluated on the basis of phenotype data (collected over two years) and simple sequence repeat (SSR) data. The results showed that significant differences in important traits were present among the landraces, especially in kernel weight and ear height. The comparison of the yield components of two elite populations, BSSSC9 and Suwan2, with those of landraces indicated that the ear length of 28 landraces, the kernel weight of 35 landraces, the row number per ear of 11 landraces, and the kernel number of 3 landraces were better than those of the two elite populations, implicating that abundant genetic diversity and favorable genes were accumulated within these landraces. Thirty-six SSR markers revealed a total of 179 alleles in 102 landraces, with an average of 4.97 alleles per loci, and 0.4362 polymorphism information content (ranging from 0.3141 to 0.5601). Cluster analysis based on the phenotypic data and SSR data divided the 102 landraces into two or three major groups. Integrating the phenotypic data and SSR diversity, we suggested that abundant genetic variability and specific alleles were contained within the set of landraces. A few landraces (including Batangbai, Bairihui, Dongjingbai, and Huangyumi) with large genetic diversity and specific favorable characteristics could be selected for further research and utilization.
Keywords maize (Zea mays L.)      landrace      phenotype      simple sequence repeat (SSR)      genetic diversity      
Issue Date: 05 December 2009
URL:  
http://academic.hep.com.cn/fag/EN/10.1007/s11703-009-0075-1     OR     http://academic.hep.com.cn/fag/EN/Y2009/V3/I4/374
Carvalho V P, Ruas C F, Ferreira J M, Moreira R M P, Ruas P M(2004). Genetic diversity among maize (Zea mays L.) landraces assessed by RAPD markers. Genet Mol Biol, 27(2): 228―236

doi: 10.1590/S1415-47572004000200017
Doebley J F, Goodman M M, Stuber C W (1985). Isozymesvariation in the races of maize from Mexico. Amer J Bat, 72(2): 629―639

doi: 10.2307/2443674
Dubreuil P, Charcosset A (1998). Genetic diversity within and among maize populations:a comparison between isozyme and nuclear RFLP loci. Theor Appl Genet, 96: 577―587

doi: 10.1007/s001220050776
Dubreuil P, Rebourg C, Merlino M (1999). Evaluationof a DNA-pooled sampling strategy for estimating the RFLP diversityof maize population. Plant Mol Biol Report, 17: 123―138

doi: 10.1023/A:1007571101815
Gauthier P, Gouesnard B, Dallard J, Redaelli R, Rebourg C, Charcosset A, Boyat A (2002). RFLP diversity and relationships amongtraditional European maize populations. Theor Appl Genet, 105: 91―99

doi: 10.1007/s00122-002-0903-7
Gethi J G, Labate J A, Lamkey K R, Smith M E, Kresovich S (2002). SSR variation in important U.S. maize inbred lines. Crop Sci, 42: 951―957
Labate J A, Lamkey K R, Mitchell S E, Kresovich S, Sullivan H, Smith J S C (2003). Molecularand historical aspects of corn belt dent diversity. Crop Sci, 43: 80―91
Lefor-Buson M, Lavergene V, Daudin Z J, Charcosset A, Sampoux J P, Gallais A (1991). Geneticvariability among populations of maize germplasm. 2. Enzymatic polymorphismand its relationship to quantitative trait diversity. Maydica, 36: 237―246
Li Y (1998). Development and germplasm base ofmaize hybrids in China. Maydica, 43(4): 259―269
Liu J L, Zheng Y L, Zhang Z X, Liu H, Li J S, Xu S Z (1998). A primary study on heterotic patternof landraces from the Three-Gorge area. Crops, S1: 6―12 (in Chinese)
Liu K, Goodman M, Muse S, Smith J S, Buckler E, Doebley J (2003). Geneticstructure and diversity among maize inbred lines as inferred fromDNA microsatellites. Genetics, 165: 2117―2128
Liu X J, Zheng Y L, Liu J L (1999b). Genetic diversityevaluation of maize recurrent selection population with RAPD marker. Sci Agric Sin, 32(3): 14―20 (in Chinese)
Liu X J, Zheng Y L, Shi Y G, Xu S Z, Li J S, Liu J L (1999a). Comparison and utilization of geneticvariation for 4 corn synthetic populations and their parent populations. Acta Agron Sin, 25(2): 208―214 (in Chinese)
Liu X, Li M S, Li X H, Tian Q Z, Bai L, Zhang S H (2005). Sampling method for genetic variationsurvey in maize populations detected by SSR markers. Acta Agron Sin, 31: 858―863 (in Chinese)
Liu Y J, Huang Y B, Rong T Z, Tian M L, Yang J P (2005). Comparativeanalysis of genetic diversity in landraces of waxy from Yunnan andGuizhou using SSR markers. Sci Agric Sin, 31(4): 648―653 (in Chinese)
Livini C, Ajmone-Marsan P, Melchinger A E, Messmer M M, Motto M (1992). Genetic diversity of maize inbred lines within and among heteroticgroups revealed by RFLPs. Theor Appl Genet, 84: 17―25

doi: 10.1007/BF00223976
Lu H, Li J S, Liu J L, Bernardo R (2002). Allozyme polymorphisms of maize populations from southwesternChina. Theor Appl Genet, 104(1): 119―126

doi: 10.1007/s001220200014
Mantel N (1967). The detection of disease clusteringand a generalized regression approach. Cancer Research, 27: 209―220
Melchinger A E, Miessmer M M, Lee M, Woodman W L (1991). Diversity and relationships amongU.S. maize inbreds revealed by restriction fragment length polymorphisms. Crop Sci, 31: 669―678
Nei M (1978). Estimation of average heterozygosityand genetic distance from a small number of individuals. Genetics, 89: 583―590
Pressoir G, Berthaud J (2004). Patterns of population structure in maize landracesfrom the Central Valleys of Oaxaca in Mexico. Heredity, 92: 88―94

doi: 10.1038/sj.hdy.6800387
Rebourg C, Gouesnard B, Charcosset A (2001). Largescale molecular analysis of traditional European maize populations.Relationships with morphological variation. Heredity, 86: 574―587

doi: 10.1046/j.1365-2540.2001.00869.x
Revilla P, Sengas P, Malvar R A, Cartea M E, Ordas A (1998). Isozyme variation and historical relationships among the maize racesof Spain. Maydica, 43: 175―182
Rohlf F J (2002). NTSYSpc, Numerical taxonomy and multivariateanalysis system. Version 2.11a, User guide. New York, NY: Exeter software, 1―38
Saghai-Maroof M A, Soliman K M, Jorgenson R, Allard R W (1984). Ribosomal DNA spacer length polymorphismsin barley: Mendelian inheritance, chromosomal location and populationdynamics. Proc Natl Acad Sci USA, 81: 8014―8018

doi: 10.1073/pnas.81.24.8014
Vigouroux Y, Mitchell S, Matsuoka Y, Hamblin M, Kresovich S, Smith J S C, Jaqueth J, Smith O S, Doebley J (2005). An analysis of geneticdiversity across the maize genome using microsatellites. Genetics, 169: 1617―1630

doi: 10.1534/genetics.104.032086
Warburton M L, Reif J C, Frisch M, Bohn M, Bedoya C, Xia X C, Crossa J, Franco J, Hoisington D, Pixley K, Taba S, Melchinger A E (2008). Genetic diversityin CIMMYT nontemperate maize germplasm: Landraces, open pollinatedvarieties, and inbred lines. Crop Sci, 48: 617―624

doi: 10.2135/cropsci2007.02.0103
Wu J F (1982). A review on the germplasm base ofthe main corn hybrids in China. Sci AgricSin, 16(2): 1―8 (in Chinese)
Wu Y S, Zheng Y L, Sun R, Wu S Y, Gu H B, Bi Y H (2004). Genetic diversity of waxy corn andpopcorn landraces in Yunnan by SSR markers. Acta Agron Sin, 30: 36―42 (in Chinese)
Xu S Z, Wu G L (1998). Evolution study on local variety of maize in Hubei province. Crops, S1: 37―44 (in Chinese)
Yao Q L, Yang K C, Pan G T, Rong T Z (2007). Genetic diversity of maize (Zea mays L.) landraces from Southwest China based on SSRdata. J Genet Genom, 34(9): 851―860

doi: 10.1016/S1673-8527(07)60096-4
Zhang Z X, Wu H Q (1997). Estimating the relative number of favorable alleles within syntheticpopulations for improving elite maize hybrids. Journal of Hubei Agricultural College, 17(4): 241―244 (in Chinese)
Zhang Z X, Zheng Y L, Li J S, Liu J L (1994). A study on genetic potential of ten maize (Zea mays L.) local varieties from Three Gorgearea. Journal of Huazhong AgriculturalUniversity, 13(5): 449―454 (in Chinese)
Zhang Z X, Zheng Y L, Li J S, Liu J L (1995). Allozyme polymorphism within and among maize (Zea mays L.) local varieties and exotic populations. Journal of Huazhong Agricultural University, 14(4): 322―326 (in Chinese)
[1] Juntao GU, Minsheng YANG, Jinmao WANG, Jun ZHANG, Haiyong LIANG, Li JIA, . Genetic diversity analysis of black locust ( Robinia pseudoacacia L.) distributed in China based on allozyme markers approach[J]. Front. Agric. China, 2010, 4(3): 366-374.
[2] Yanqin LI, Xiaoling FAN, Tonglin SHI, Quanbin ZHANG, Zongwen ZHANG, . SRAP marker reveals genetic diversity in tartary buckwheat in China[J]. Front. Agric. China, 2009, 3(4): 383-387.
[3] Xuemei HUO, Hongwei HAN, Jun ZHANG, Minsheng YANG. Genetic diversity of Robinia pseudoacacia populations in China detected by AFLP markers[J]. Front Agric Chin, 2009, 3(3): 337-345.
[4] Yawen ZENG, Shuming YANG, Juan DU, Xiaoying PU, Hongliang ZHANG, Zichao LI, Luxiang WANG, Jiafu LIU, Fenghui XIAO. Correlation between allele sizes of microsatellites and phenotypic variations in rice landraces[J]. Front Agric Chin, 2009, 3(2): 130-139.
[5] PAN Zhifen, LONG Hai, YU Maoqun, DENG Guangbing, ZHAI Xuguang, TANG Yawei, QIANG Xiaolin. Molecular analysis of cultivated naked barley ( L.) from Qinghai-Tibet Plateau in China using SSR markers[J]. Front. Agric. China, 2008, 2(4): 372-379.
[6] ZHU Li, LI Xuewei, SHUAI Surong, LI Mingzhou, LI Fangqiong, CHEN Lei. Analysis of genetic distribution and population genetic structure of the gene in 10 pig breeds[J]. Front. Agric. China, 2008, 2(3): 348-354.
[7] CHEN Fabo, YANG Kecheng, RONG Tingzhao, PAN Guangtang. Analysis of genetic diversity of maize hybrids in the regional tests in Sichuan and Southwest China[J]. Front. Agric. China, 2008, 2(2): 162-171.
[8] LI Xianglong, ZHOU Rongyan, ZHENG Guiru, LI Lanhui, LIU Zhengzhu, GONG Yuanfang. Deletion of TTTTA in 5′UTR of goat gene and its distribution in different population groups and genetic effect on bodyweight at different ages[J]. Front. Agric. China, 2008, 2(1): 103-109.
[9] QU Dongyan, YANG Zhangping, GUO Xiaoya, MAO Yongjiang, SUN Wei, GEN Rongqing, REN Xianglian, CHANG Guobing, HUANG Danli, CHANG Hong, MA Yuehui. Study on polymorphisms of microsatellite DNA of six Chinese indigenous sheep and goat breeds[J]. Front. Agric. China, 2007, 1(4): 472-477.
[10] WANG Xingfen, MA Jun, YANG Shuo, ZHANG Guiyin, MA Zhiying. Assessment of genetic diversity among Chinese upland cottons with Fusarium and/or Verticillium wilts resistance by AFLP and SSR markers[J]. Front. Agric. China, 2007, 1(2): 129-135.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed