Please wait a minute...
Frontiers of Agriculture in China

ISSN 1673-7334

ISSN 1673-744X(Online)

CN 11-5729/S

Front Agric Chin    2011, Vol. 5 Issue (1) : 22-30    https://doi.org/10.1007/s11703-010-1021-y
REVIEW
Expression, transcriptional regulation and functional analysis of phosphate transporter genes in plants
Chengjin GUO1, Jinfeng ZHAO1, Chuanfan SUN2, Juntao GU3, Wenjing LU3, Xiaojuan LI3, Kai XIAO1()
1. College of Agronomy, Agricultural University of Hebei, Baoding 071001, China; 2. Technology Development Center of Rural Areas in China, the Ministry of Science and Technology of the People’s Republic of China, Beijing 100045, China; 3. College of Life Sciences, Agricultural University of Hebei, Baoding 071001, China
 Download: PDF(159 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Phosphorus is one of the essential mineral nutrients required by all living cells. Phosphate mobilization into the plant is a complex process in which the absorption and translocation of this major nutrient are determined largely by the phosphate (Pi) transporters. In this paper, the recent progress on the plant phosphate (Pi) transporter genes, such as the molecular characterizations, expression patterns in response to Pi status, other inorganic nutrients, and the other factors, expression regulations via arbuscular mycorrhizal (AM) symbiosis, mechanisms of transcriptional regulation, functional identification approaches, and the gene engineering perspectives on improvement of plant phosphorus nutrition, etc., have been reviewed. The purpose of this paper is to provide a theoretical basis for further elucidation of the molecular mechanism of Pi transportation mediated by Pi transporters and to promote the generation of elite crop germplasms with a significant improvement in phosphorus use efficiency in the future.

Keywords plant phosphate (Pi) transporter gene      expression      transcriptional regulation      functional analysis     
Corresponding Author(s): XIAO Kai,Email:xiaokai@hebau.edu.cn   
Issue Date: 05 March 2011
 Cite this article:   
Jinfeng ZHAO,Chuanfan SUN,Juntao GU, et al. Expression, transcriptional regulation and functional analysis of phosphate transporter genes in plants[J]. Front Agric Chin, 2011, 5(1): 22-30.
 URL:  
https://academic.hep.com.cn/fag/EN/10.1007/s11703-010-1021-y
https://academic.hep.com.cn/fag/EN/Y2011/V5/I1/22
1 Ai P, Sun S, Zhao J, Fan X, Xin W, Guo Q, Yu L, Shen Q, Wu P, Miller A J, Xu G (2008). Two rice phosphate transporters, OsPht1;2 and OsPht1;6, have different functions and kinetic properties in uptake and translocation. Plant J , 57(5): 798–809
doi: 10.1111/j.1365-313X.2008.03726.x
2 Baek S H, Chung I M, Yun S J (2001). Molecular cloning and characterization of a tobacco leaf cDNA encoding a phosphate transporter. Mol Cells , 11(1): 1–6
3 Bucher M (2007). Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. New Phytol , 173(1): 11–26
doi: 10.1111/j.1469-8137.2006.01935.x
4 Catarecha P, Segura M D, Franco-Zorrilla J M, García-Ponce B, Lanza M, Solano R, Paz-Ares J, Leyva A (2007). A mutant of the Arabidopsis phosphate transporter PHT1;1 displays enhanced arsenic accumulation. Plant Cell , 19(3): 1123–1133
doi: 10.1105/tpc.106.041871
5 Chapin L J, Jones M L (2009). Ethylene regulates phosphorus remobilization and expression of a phosphate transporter (PhPT1) during petunia corolla senescence. J Exp Bot , 60(7): 2179–2190
doi: 10.1093/jxb/erp092
6 Cubero B, Nakagawa Y, Jiang X Y, Miura K J, Li F, Raghothama K G, Bressan R A, Hasegawa P M, Pardo J M (2009). The phosphate transporter PHT4;6 is a determinant of salt tolerance that is localized to the Golgi apparatus of Arabidopsis. Mol Plant , 2(3): 535–552
doi: 10.1093/mp/ssp013
7 Daram P, Brunner S, Persson B L, Amrhein N, Bucher M (1998). Functional analysis and cell-specific expression of a phosphate transporter from tomato. Planta , 206(2): 225–233
doi: 10.1007/s004250050394
8 Daram P, Brunner S, Rausch C, Steiner C, Amrhein N, Bucher M (1999). Pht2;1 encodes a low-affinity phosphate transporter from Arabidopsis. Plant Cell , 11(11): 2153–2166
9 Drew M C, Saker L R (1984). Uptake and long-distance transport of phosphate, potassium and chloride in relation to internal ion concentrations in barley: evidence of non-allosteric regulation. Planta , 160(6): 500–507
doi: 10.1007/BF00411137
10 Furihata T, Suzuki M, Sakurai H (1992). Kinetic characterization of 2 phosphate-uptake systems with different affinities in suspension-cultured Catharanthus roseus protoplasts. [REMOVED HYPERLINK FIELD] Plant Cell Physiol , 33: 1151–1157
11 Gordon-Weeks R, Tong Y, Davies T G, Leggewie G (2003). Restricted spatial expression of a high-affinity phosphate transporter in potato roots. J Cell Sci , 116(Pt 15): 3135–3144
doi: 10.1242/jcs.00615
12 Grunwald U, Guo W, Fischer K, Isayenkov S, Ludwig-Müller J, Hause B, Yan X, Küster H, Franken P (2009). Overlapping expression patterns and differential transcript levels of phosphate transporter genes in arbuscular mycorrhizal, Pi-fertilised and phytohormone-treated Medicago truncatula roots. Planta , 229(5): 1023–1034
doi: 10.1007/s00425-008-0877-z
13 Guo B, Jin Y, Wussler C, Blancaflor E B, Motes C M, Versaw W K (2008). Functional analysis of the Arabidopsis PHT4 family of intracellular phosphate transporters. New Phytol , 177(4): 889–898
doi: 10.1111/j.1469-8137.2007.02331.x
14 Harrison M J, Dewbre G R, Liu J (2002). A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi. Plant Cell , 14(10): 2413–2429
doi: 10.1105/tpc.004861
15 Harrison M J, van Buuren M L (1995). A phosphate transporter from the mycorrhizal fungus Glomus versiforme. Nature , 378(6557): 626–629
doi: 10.1038/378626a0
16 Hase A, Nishikoori M, Okuyama H (2004). Induction of high affinity phosphate transporter in the duckweed Spirodela oligorrhiza. Physiol Plant , 120(2): 271–279
doi: 10.1111/j.0031-9317.2004.0231.x
17 Haseloff J, Siemering K R, Prasher D C, Hodge S (1997). Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proc Natl Acad Sci USA , 94(6): 2122–2127
doi: 10.1073/pnas.94.6.2122
18 Huang C, Barker S J, Langridge P, Smith F W, Graham R D (2000). Zinc deficiency up-regulates expression of high-affinity phosphate transporter genes in both phosphate-sufficient and -deficient barley roots. Plant Physiol , 124(1): 415–422
doi: 10.1104/pp.124.1.415
19 Huang X, Zhu W, Dai S, Gai S, Zheng G, Zheng C (2008). The involvement of mitochondrial phosphate transporter in accelerating bud dormancy release during chilling treatment of tree peony (Paeonia suffruticosa). Planta , 228(4): 545–552
doi: 10.1007/s00425-008-0757-6
20 Hürlimann H C, Pinson B, Stadler-Waibel M, Zeeman S C, Freimoser F M (2009). The SPX domain of the yeast low-affinity phosphate transporter Pho90 regulates transport activity. EMBO Rep , 10(9): 1003–1008
doi: 10.1038/embor.2009.105
21 Javot H, Penmetsa R V, Terzaghi N, Cook D R, Harrison M J, (2007). A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci USA , 104(5): 1720–1725
doi: 10.1073/pnas.0608136104
22 Jefferson R A, Kavanagh T A, Bevan M W (1987). GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J , 6(13): 3901–3907
23 Karandashov V, Bucher M (2005). Symbiotic phosphate transport in arbuscular mycorrhizas. Trends Plant Sci , 10(1): 22–29
doi: 10.1016/j.tplants.2004.12.003
24 Karandashov V, Nagy R, Wegmüller S, Amrhein N, Bucher M (2004). Evolutionary conservation of a phosphate transporter in the arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci USA , 101(16): 6285–6290
doi: 10.1073/pnas.0306074101
25 Karthikeyan A S, Ballachanda D N, Raghothama K G (2009). Promoter deletion analysis elucidates the role of cis elements and 5’UTR intron in spatiotemporal regulation of AtPht1;4 expression in Arabidopsis. Physiol Plant , 136(1): 10–18
doi: 10.1111/j.1399-3054.2009.01207.x
26 Karthikeyan A S, Varadarajan D K, Mukatira U T, D’Urzo M P, Damsz B, Raghothama K G (2002). Regulated expression of Arabidopsis phosphate transporters. Plant Physiol , 130(1): 221–233
doi: 10.1104/pp.020007
27 Kiiskinen M, Korhonen M, Kangasj?rvi J (1997). Isolation and characterization of cDNA for a plant mitochondrial phosphate translocator (Mpt1): ozone stress induces Mpt1 mRNA accumulation in birch (Betula pendula Roth). Plant Mol Biol , 35(3): 271–279
doi: 10.1023/A:1005868715571
28 Leggewie G, Willmitzer L, Riesmeier J W (1997). Two cDNAs from potato are able to complement a phosphate uptake-deficient yeast mutant: identification of phosphate transporters from higher plants. Plant Cell , 9(3): 381–392
29 Li Q, Gao X, Sun Y, Zhang Q, Song R, Xu Z (2006). Isolation and characterization of a sodium-dependent phosphate transporter gene in Dunaliella viridis. Biochem Biophys Res Commun , 340(1): 95–104
doi: 10.1016/j.bbrc.2005.11.144
30 Liu C, Muchhal U S, Uthappa M, Kononowicz A K, Raghothama K G (1998a). Tomato phosphate transporter genes are differentially regulated in plant tissues by phosphorus. Plant Physiol , 116(1): 91–99
doi: 10.1104/pp.116.1.91
31 Liu H, Trieu A T, Blaylock L A, Harrison M J (1998b). Cloning and characterization of two phosphate transporters from Medicago truncatula roots: regulation in response to phosphate and to colonization by arbuscular mycorrhizal (AM) fungi. Mol Plant Microbe Interact , 11(1): 14–22
doi: 10.1094/MPMI.1998.11.1.14
32 Liu J, Versaw W K, Pumplin N, Gomez S K, Blaylock L A, Harrison M J (2008). Closely related members of the Medicago truncatula PHT1 phosphate transporter gene family encode phosphate transporters with distinct biochemical activities. J Biol Chem , 283(36): 24673–24681
doi: 10.1074/jbc.M802695200
33 Lunn J E, Douce R (1993). Transport of inorganic pyrophosphate across the spinach chloroplast envelope. Biochem J , 290(Pt 2): 375–379
34 McPharlin I R, Bieleski R L (1987). Phosphate-uptake by Spirodela and Lemna during early phosphorus deficiency. Aust J Plant Physiol , 14: 561–572
35 Miao J, Sun J, Liu D, Li B, Zhang A, Li Z, Tong Y (2009). Characterization of the promoter of phosphate transporter TaPHT1.2 differentially expressed in wheat varieties. J Genet Genomics , 36(8): 455–466
doi: 10.1016/S1673-8527(08)60135-6
36 Ming F, Lu Q, Wang W, Zhang S, Guo B, Shen D (2006). Cloning, expression and function of phosphate transporter encoded gene in Oryza sativa L.. Sci China C Life Sci , 49(5): 409–413
doi: 10.1007/s11427-006-2030-1
37 Ming F, Mi G H, Lu Q, Yin S, Zhang S S, Guo B, Shen D L (2005). Cloning and characterization of cDNA for the Oryza sativa phosphate transporter. 28Cell Mol. Biol Lett , 10: 401–411
38 Misson J, Thibaud M C, Bechtold N, Raghothama K, Nussaume L (2004). Transcriptional regulation and functional properties of Arabidopsis Pht1;4, a high affinity transporter contributing greatly to phosphate uptake in phosphate deprived plants. Plant Mol Biol , 55(5): 727–741
doi: 10.1007/s11103-004-1965-5
39 Mitsukawa N, Okumura S, Shirano Y, Sato S, Kato T, Harashima S, Shibata D (1997). Overexpression of an Arabidopsis thaliana high-affinity phosphate transporter gene in tobacco cultured cells enhances cell growth under phosphate-limited conditions. Proc Natl Acad Sci USA , 94(13): 7098–7102
doi: 10.1073/pnas.94.13.7098
40 Muchhal U S, Pardo J M, Raghothama K G (1996). Phosphate transporters from the higher plant Arabidopsis thaliana. Proc Natl Acad Sci USA , 93(19): 10519–10523
doi: 10.1073/pnas.93.19.10519
41 Muchhal U S, Raghothama K G (1999). Transcriptional regulation of plant phosphate transporters. Proc Natl Acad Sci USA , 96(10): 5868–5872
doi: 10.1073/pnas.96.10.5868
42 Nagy R, Karandashov V, Chague V, Kalinkevich K, Tamasloukht M, Xu G, Jakobsen I, Levy A A, Amrhein N, Bucher M (2005). The characterization of novel mycorrhiza-specific phosphate transporters from Lycopersicon esculentum and Solanum tuberosum uncovers functional redundancy in symbiotic phosphate transport in solanaceous species. Plant J , 42(2): 236–250
doi: 10.1111/j.1365-313X.2005.02364.x
43 Nagy R, Vasconcelos M J, Zhao S, McElver J, Bruce W, Amrhein N, Raghothama K G, Bucher M (2006). Differential regulation of five Pht1 phosphate transporters from maize (Zea mays L.). Plant Biol (Stuttg) , 8(2): 186–197
doi: 10.1055/s-2005-873052
44 Nakamori K, Takabatake R, Umehara Y, Kouchi H, Izui K, Hata S, Raghothama K G, Bucher M, Nakamori K, Takabatake R, Umehara Y, Kouchi H, Izui K, Hata S (2002). Cloning, functional expression, and mutational analysis of a cDNA for Lotus japonicus mitochondrial phosphate transporter. Plant Cell Physiol , 43(10): 1250–1253
doi: 10.1093/pcp/pcf141
45 Okumura S, Mitsukawa N, Shirano Y, Shibata D (1998). Phosphate transporter gene family of Arabidopsis thaliana. DNA Res , 5(5): 261–269
doi: 10.1093/dnares/5.5.261
46 Ow D W, DE Wet J R, Helinski D R, Howell S H, Wood K V, Deluca M (1986). Transient and stable expression of the firefly luciferase gene in plant-cells and transgenic plants. Science , 234(4778): 856–859
doi: 10.1126/science.234.4778.856
47 Paszkowski U, Kroken S, Roux C, Briggs S P (2002). Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci USA , 99(20): 13324–13329
doi: 10.1073/pnas.202474599
48 Pavón L R, Lundh F, Lundin B, Mishra A, Persson B L, Spetea C (2008). Arabidopsis ANTR1 is a thylakoid Na+-dependent phosphate transporter: functional characterization in Escherichia coli. J Biol Chem , 283(20): 13520–13527
doi: 10.1074/jbc.M709371200
49 Rae A L, Cybinski D H, Jarmey J M, Smith F W (2003). Characterization of two phosphate transporters from barley; evidence for diverse function and kinetic properties among members of the Pht1 family. Plant Mol Biol , 53(1-2): 27–36
doi: 10.1023/B:PLAN.0000009259.75314.15
50 Rausch C, Daram P, Brunner S, Jansa J, Laloi M, Leggewie G, Amrhein N, Bucher M (2001). A phosphate transporter expressed in arbuscule-containing cells in potato. Nature , 414(6862): 462–470
doi: 10.1038/35106601
51 Rausch C, Zimmermann P, Amrhein N, Bucher M (2004). Expression analysis suggests novel roles for the plastidic phosphate transporter Pht2;1 in auto- and heterotrophic tissues in potato and Arabidopsis. Plant J , 39(1): 13–28
doi: 10.1111/j.1365-313X.2004.02106.x
52 Schünmann P H, Richardson A E, Smith F W, Delhaize E (2004a). Characterization of promoter expression patterns derived from the Pht1 phosphate transporter genes of barley (Hordeum vulgare L.). J Exp Bot , 55(398): 855–865
doi: 10.1093/jxb/erh103
53 Schünmann P H, Richardson A E, Vickers C E, Delhaize E (2004b). Promoter analysis of the barley Pht1;1 phosphate transporter gene identifies regions controlling root expression and responsiveness to phosphate deprivation. Plant Physiol , 136(4): 4205–4214
doi: 10.1104/pp.104.045823
54 Seo H M, Jung Y, Song S, Kim Y, Kwon T, Kim D H, Jeung S J, Yi Y B, Yi G, Nam M H, Nam J (2008). Increased expression of OsPT1, a high-affinity phosphate transporter, enhances phosphate acquisition in rice. Biotechnol Lett , 30(10): 1833–1838
doi: 10.1007/s10529-008-9757-7
55 Shimogawara K, Usuda H (1995). Uptake of inorganic phosphate by suspension-cultured tobacco cells: kinetics and regulation by Pi starvation. Plant Cell Physiol , 36: 341–351
56 Shin H, Shin H S, Dewbre G R, Harrison M J (2004). Phosphate transport in Arabidopsis: Pht1;1 and Pht1;4 play a major role in phosphate acquisition from both low- and high-phosphate environments. Plant J , 39(4): 629–642
doi: 10.1111/j.1365-313X.2004.02161.x
57 Smith F W, Ealing P M, Dong B, Delhaize E (1997). The cloning of two Arabidopsis genes belonging to a phosphate transporter family. Plant J , 11(1): 83–92
doi: 10.1046/j.1365-313X.1997.11010083.x
58 Smith F W, Rae A L, Hawkesford M J (2000). Molecular mechanisms of phosphate and sulphate transport in plants. Biochim Biophys Acta , 1465(1-2): 236–245
59 Stefanovic A, Ribot C, Rouached H, Wang Y, Chong J, Belbahri L, Delessert S, Poirier Y (2007). Members of the PHO1 gene family show limited functional redundancy in phosphate transfer to the shoot, and are regulated by phosphate deficiency via distinct pathways. Plant J , 50(6): 982–994
doi: 10.1111/j.1365-313X.2007.03108.x
60 Takabatake R, Hata S, Taniguchi M, Kouchi H, Sugiyama T, Izui K (1999). Isolation and characterization of cDNAs encoding mitochondrial phosphate transporters in soybean, maize, rice, and Arabidopis. Plant Mol Biol , 40(3): 479–486
doi: 10.1023/A:1006285009435
61 Tatry M V, El Kassis E, Lambilliotte R, Corratgé C, van Aarle I, Amenc L K, Alary R, Zimmermann S, Sentenac H, Plassard C (2009). Two differentially regulated phosphate transporters from the symbiotic fungus Hebeloma cylindrosporum and phosphorus acquisition by ectomycorrhizal Pinus pinaster. Plant J , 57(6): 1092–1102
doi: 10.1111/j.1365-313X.2008.03749.x
62 Tittarelli A, Milla L, Vargas F, Morales A, Neupert C, Meisel L A, Salvo-G H, Pe?aloza E, Mu?oz G, Corcuera L J, Silva H (2007). Isolation and comparative analysis of the wheat TaPT2 promoter: identification in silico of new putative regulatory motifs conserved between monocots and dicots. J Exp Bot , 58(10): 2573–2582
doi: 10.1093/jxb/erm123
63 Vance C P, Uhde-Stone C, Allan D L (2003). Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol , 157(3): 423–447
doi: 10.1046/j.1469-8137.2003.00695.x
64 Versaw W K, Harrison M J (2002). A chloroplast phosphate transporter, PHT2;1, influences allocation of phosphate within the plant and phosphate-starvation responses. Plant Cell , 14(8): 1751–1766
doi: 10.1105/tpc.002220
65 Xu G H, Chague V, Melamed-Bessudo C, Kapulnik Y, Jain A, Raghothama K G, Levy A A, Silber A (2007). Functional characterization of LePT4: a phosphate transporter in tomato with mycorrhiza-enhanced expression. J Exp Bot , 58(10): 2491–2501
doi: 10.1093/jxb/erm096
66 Yu F T, Zhang A M, Chen S Y, Zhang F S (2001). Differential accumulation of the new high-affinity phosphate transporter candidated gene fragment in rice roots in response to phosphorus deficiency stress. Yi Chuan Xue Bao , 28(2): 144–151 (in Chinese)
67 Zeng Y J, Ying J, Liu J Z, Sun J H, Li B, Xiao H S, Li Z S (2002). Function analysis of a wheat phosphate transporter in yeast mutant. Yi Chuan Xue Bao , 29(11): 1017–1020 (in Chinese)
[1] Lifeng ZHANG, Aihua YAN, Dong TIAN, Shengfang HAN, Dongmei WANG. Cloning and prokaryotic expression of translationally controlled tumor protein (TaTCTP) gene from wheat and preparation of antiserum[J]. Front Agric Chin, 2011, 5(4): 473-478.
[2] Yunwei ZHANG, Xiang GAO, Shengfang HAN, Dongmei WANG. Cloning and prokaryotic expression of TaE3 from wheat and preparation of antiserum[J]. Front Agric Chin, 2011, 5(4): 437-442.
[3] Wenjing LU, Jincai LI, Fangpeng LIU, Juntao GU, Chengjin GUO, Liu XU, Huiyan ZHANG, Kai XIAO. Expression pattern of wheat miRNAs under salinity stress and prediction of salt-inducible miRNAs targets[J]. Front Agric Chin, 2011, 5(4): 413-422.
[4] Chengjin GUO, Wensuo CHANG, Juntao GU, Xiaojuan LI, Wenjing LU, Kai XIAO. Molecular characterization, transcriptional regulation and function analysis of nitrate transporters in plants[J]. Front Agric Chin, 2011, 5(3): 291-298.
[5] Xirong CUI, Yongsheng ZHANG, Fanghua ZHAO, Chengjin GUO, Juntao GU, Wenjing LU, Xiaojuan LI, Kai XIAO. Molecular characterization and expression analysis of phosphate transporter gene TaPT2-1 in wheat (Triticum aestivum L.)[J]. Front Agric Chin, 2011, 5(3): 274-283.
[6] Qian WANG, Wei ZHAO, Zhimin HAO, Jingao DONG. mRNA level of PKA-c gene in Setosphaeria turcica with different nutrition sources under metal ion or osmotic stress[J]. Front Agric Chin, 2011, 5(3): 361-365.
[7] Bin ZHAO, Meng ZHENG, Zhiying SUN, Zhiyong LI, Jihong XING, Jingao DONG. BcDR1, a putative gene, regulates the development and pathogenicity of Botrytis cinerea[J]. Front Agric Chin, 2011, 5(3): 338-343.
[8] Xueli HAN, Yonggang PAN, Yingchao LIU, Jihong XING, Jingao DONG. Knockdown of ACS9 expression in Arabidopsis decreases the tolerance to salt and osmotic stress[J]. Front Agric Chin, 2011, 5(2): 181-186.
[9] Yu BAI, Runfang GUO, Hongwei YU, Long JIAO, Shuli DING, Yingmin JIA. Cloning of endo-β-glucanase I gene and expression in Pichia pastoris[J]. Front Agric Chin, 2011, 5(2): 196-200.
[10] Runfang GUO, Kexue GAO, Hongwei YU, Yingmin JIA. Construction of the expression vector and location analysis of thermotolerant endoglucanase in E. coli[J]. Front Agric Chin, 2011, 5(1): 72-76.
[11] Guiqin LI, Jing QI, Yuxing ZHANG, Zhihua GAO, Dongqian XU, Huixuan LI, Chenmin HUO. Construction and transformation for the antisense expression vector of the polyphenol oxidase gene in Yali pear[J]. Front Agric Chin, 2011, 5(1): 40-44.
[12] Bin HAN, Ruixia BAI, Li LI, Lisha ZHANG, Chuan MA, Jiwei ZHAO, Jinxin WANG, Jianying PENG. Establishment of cDNA-AFLP technology system and stoneless gene difference expression in Ziziphus jujuba Mill.[J]. Front Agric Chin, 2010, 4(4): 449-455.
[13] Linling LI, Hua CHENG, Jianying PENG, Shuiyuan CHENG. Construction of a plant expression vector of chalcone synthase gene of Ginkgo biloba L. and its genetic transformation into tobacco[J]. Front Agric Chin, 2010, 4(4): 456-462.
[14] Chengjin GUO, Jinfeng ZHAO, Cundong LI, Kai XIAO, Haina ZHANG, Chuanfan SUN, Juntao GU, . Identification of senescence-related genes by cDNA-AFLP in cotton ( Gossypium hirsutum L.)[J]. Front. Agric. China, 2010, 4(3): 308-316.
[15] Xiaobo ZHANG, Yuzhu ZUO, Jinghui FAN, Yuan LIU, . Cloning and expression of the membrane protein gene of TGEV HB06 strain[J]. Front. Agric. China, 2010, 4(2): 237-242.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed