Please wait a minute...
Frontiers of Agriculture in China

ISSN 1673-7334

ISSN 1673-744X(Online)

CN 11-5729/S

Front Agric Chin    2010, Vol. 4 Issue (4) : 443-448     DOI: 10.1007/s11703-010-1038-2
Presence of indigenous endophytic bacteria in jujube seedlings germinated from seeds in vitro
Xiaojie HOU1, Zhengnan LI2, Dangyue HAN1, Qiuxian HUANG1, Longxian RAN1()
1. Section Forest Pathology, Forestry College, Agricultural University of Hebei, Baoding 071001, China; 2. National Engineering Research Center for Agriculture in Northern Mountainous Areas, Baoding 071000, China
Download: PDF(173 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

The presence of indigenous endophytic bacteria in tissue-cultured seedlings germinated from seeds of Zizyphus jujuba var. Fupingdazao was investigated using cultivation, light microscopy and scanning electronic microscopy (SEM). In addition, bacteria specific 16S rDNA PCR followed by denaturing gradient gel electrophoresis (DGGE) was used. No cultivable bacteria could be detected on plates or in liquid cultures. However, large quantities of endophytic bacteria in jujube seedlings were observed under the light microscope. The bacterial cells were round (measuring 1.5 μm-1.8 μm), short rods (2.2 μm-2.9 μm × 1.1 μm-1.9 μm) and rod shaped (3.7 μm-4.4 μm × 1.6 μm-1.9 μm). Rod-shaped bacterial cells (measuring 3.5 m-4.0 m × 1.5 m-2.0 m) were observed by SEM as well. A 16S rDNA fragment of 1.5 kb could be amplified from the total DNA of seedlings of jujube using the bacterial primer pair 27F/1525R. The V3 fragment of 16S rDNA was separated by DGGE, and the 16S rDNA-PCR-DGGE showed that there were at least six dominant bands within the seedlings of Z. jujuba var. Fupingdazao. It can be concluded that endophytic bacteria that cannot be detected by cultivation are present with high densities in jujube seeds.

Keywords DGGE      optical microscope      scanning electron microscopy (SEM)      unculturable bacteria      Zizyphus jujuba     
Corresponding Authors: RAN Longxian,   
Issue Date: 05 December 2010
URL:     OR
Fig.1  Presence of endophytic bacteria in seedlings germinated from seeds of var. Fupingdazao observed by optical microscope
Fig.2  Observation of endophytic bacteria inside the phloem cell of seedling germinated from seeds of var. Fupingdazao by SEM
Fig.3  Amplification of 16S rDNA fragments of endophytic bacteria in jujube seedlings germinated from seeds
Note: M is Marker DL3000; Lanes 1 and 2 represent two seedlings germinated from seeds of var. Fupingdazao.
Fig.4  DGGE profiles of 16S rDNA of endophytic bacteria in jujube seedlings germinated from seeds
Note: Lanes 1 and 2 represent two seedlings germinated from var. Fupingdazao seeds.
1 Abreu-Tarazi M F, Navarrete A A, Andreote F D, Almeida C V, Tsai S M, Almeida M (2010). Endophytic bacteria in long-term in vitro cultivated “axenic” pineapple microplants revealed by PCR-DGGE. World J Microbiol Biotechnol , 26(3): 555–560
doi: 10.1007/s11274-009-0191-3
2 Amann R I, Ludwig W, Schleifer K H (1995). Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Mol Biol Rev , 59(1): 143–169
3 Bacilio-Jiménez M, Aguilar-Flores S, del Valle M V, Pérez A, Zepeda A, Zenteno E (2001). Endophytic bacteria in rice seeds inhibit early colonization of roots by Azospirillum brasilense. Soil Biol Biochem , 33(2): 167–172
doi: 10.1016/S0038-0717(00)00126-7
4 Bi Y N (2009). Occurrence and control of main diseases of jujube. Hebei Forestry , (4): 37 (in Chinese)
5 Cankar K, Kraigher H, Ravnikar M, Rupnik M (2005). Bacterial endophytes from seeds of Norway spruce (Picea abies L. Karst). FEMS Microbiol Lett , 244(2): 341–345
doi: 10.1016/j.femsle.2005.02.008
6 de Almeida C V, Andreote F, Yara R, Tanaka F A O, Azevedo J L, Almeida M (2009). Bacteriosomes in axenic plants: endophytes as stable endosymbionts. World J Microbiol Biotechnol , 25(10): 1757–1764
doi: 10.1007/s11274-009-0073-8
7 D?bereiner J, Baldani V L D, Reis V M (1995). Endophytic occurrence of diazotrophic bacteria in non-leguminous crops. In I: Fendrik M, del Gallo J, Vanderleyden M, de Zamaroczy, eds. Azospirillum VI and Related Microorganisms . Berlin: Springe, 3–14
8 Dong Z, Canny M J, McCully M E, Roboredo M R, Cabadilla C F, Ortega E, Rodes R (1994). A nitrogen-fixing endophyte of sugarcane stems (A new role for the apoplast). Plant Physiol , 105(4): 1139–1147
9 Fisher P J, Petrini O, Scott H M L (1992). The distribution of some fungal and bacterial endophytes in maize (Zea mays L.). New Phytol , 122: 299–305
doi: 10.1111/j.1469-8137.1992.tb04234.x
10 Hallmann J, Quadt-Hallmann A, Mahaffee W F, Kloepper J W (1997). Bacterial endophytes in agricultural crops. Can J Microbiol , 43 (10): 895–914
doi: 10.1139/m97-131
11 Han J G, Song W (2004). Advance in biological effects and application prospect of endophytic bacteria. Prog Nat Sci , 4: 374–379 (in Chinese)
12 He H, Qiu S X, Hu F P (2004). Advance in biological effects of endophytic bacteria. J Microbiol , 5(3): 40–45 (in Chinese)
13 Hou X J (2007). Preliminary research on biocontrol of jujube witches’ broom. Dissertation for the Master Degree . Baoding: Agric Univ Hebei(in Chinese)
14 James E K, Reis V M, Olivares F L, Baldani J I, D?bereiner J (1994). Infection of sugarcane by the nitrogen-fixing bacterium Acetobacter diazotrophicus. J Exp Bot , 45(6): 757–766
doi: 10.1093/jxb/45.6.757
15 Li Q Q, Luo K (2003). Isolation of tomato endophytic antagonists against Ralstonia solanacearum. Acta Phytopathologica Sin , 33(4): 364–367 (in Chinese)
16 Li Q Q, Ye Y F, Meng X Y, Peng H W, Lin W, Luo K (2005). Identification of endophytic bacterium strain B47 and its control effects on tomato bacterial wilt. Chin J Biol Control , 21: 178–182 (in Chinese)
17 Li Y, Tian G Z, Pu C G, Zhu S F (2005). Rapid molecular differentiation and identification of different phytoplasm as from several plants in China. Acta Phytopathologica Sin , 35(4): 293–299 (in Chinese)
18 Liu T H A, Hsu N W, Wu R Y (2005). Control of leaf-tip necrosis of micropropagated ornamental statice by elimination of endophytic bacteria. In Vitro Cell Dev Biol-Pl , 41(4): 546–549
19 Mano H, Tanaka F, Watanabe A, Kaga H, Okunishi S, Morisaki H (2006). Culturable surface and endophytic bacterial flora of the maturing seeds of rice plants (Oryza sativa) cultivated in a paddy field. Microbes Environ , 21(2): 86–100
doi: 10.1264/jsme2.21.86
20 Mercado-Blanco J, Bakker P A H M (2007). Interactions between plants and beneficial Pseudomonas spp.: exploiting bacterial traits for crop protection. Antonie van Leeuwenhoek , 92(4): 367–389
doi: 10.1007/s10482-007-9167-1
21 Mukhopadhyay K, Garrison N K, Hinton D M, Bacon C W, Khush G S, Peck H D, Datta N (1996). Identification and characterization of bacterial endophytes of rice. Mycopathologia , 134(3): 151–159
doi: 10.1007/BF00436723
22 Mundt J O, Hinkle N F (1976). Bacteria within ovules and seeds. Appl Environ Microbiol , 32(5): 694–698
23 Murashige T, Skoog F (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant , 15(3): 473–497
doi: 10.1111/j.1399-3054.1962.tb08052.x
24 Muyzer G, de Waal E C, Uitterlinden A G (1993). Profiling of complex microbial population by DGGE analysis of polymerase chain reaction amplified genes coding for 16S rRNA. Appl Environ Microbiol , 59(3): 695–700
25 Qu Z Z, Wang Y C (1993). Flora Fruit Tree Sinicae: Zizyphus jujuba. Beijing: China Forestry Publishing House(in Chinese)
26 Reiter B, Pfeifer U, Schwab H, Sessitsch A (2002). Response of endophytic bacterial communities in potato plants to infection with Erwinia carotovora subsp. atroseptica. Appl Environ Microbiol , 68(5): 2261–2268
doi: 10.1128/AEM.68.5.2261-2268.2002
27 Shen H M, Li Z N, Han D Y, Yang F H, Huang Q X, Ran L X (2010). Detection of indigenous endophytic bacteria in Eucalyptus urophylla in vitro conditions. Front Agric China , 4(1): 37–41
doi: 10.1007/s11703-009-0090-2
28 Taechowisan T, Peberdy J F, Lumyong S (2003). Isolation of endophytic actinomycetes from selected plants and their antifungal activity. World J Microbiol Biotechnol , 19(4): 381–385
doi: 10.1023/A:1023901107182
29 Thomas P, Swarna G K, Patil P, Rawal R D (2008). Ubiquitous presence of normally non-culturable endophytic bacteria in field shoot-tips of banana and their gradual activation to quiescent cultivable form in tissue cultures. Plant Cell Tiss & Org Cult , 93(1): 39–54
doi: 10.1007/s11240-008-9340-x
30 Tyson G W, Chapman J, Hugenholtz P, Allen E E, Ram R J, Richardson P M, Solovyev V V, Rubin E M, Rokhsar D S, Banfield J F (2004). Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature , 428(6978): 37–43
doi: 10.1038/nature02340
31 Wu Q, Zhao X H, Zhao S Y (2006). Application of PCR-DGGE in research of bacterial diversity in drinking water. Biomed Environ Sci , 19(5): 371–374
32 Xing D F, Ren N Q, Song J X, Qu M, Xu X L (2006). Community of activated sludge based on different targeted sequence of 16S rDNA by denaturing gradient gel electrophoresis. Environ Sci , 27: 1424–1428 (in Chinese)
33 Yan M H, Cai Z Q, Han J G, Sun L, Song W (2004). The applied research of endophytic bacteria in biological control of plant disease. Biotechnol Bull , 3: 8–12 (in Chinese)
34 Zhang D M, Huang Z Y, Yang H F (2000). Characterization and phylogenic analysis on a new isolate of genus Rhodocista. Acta Microbiol Sin , 40(1): 14–20 (in Chinese)
35 Zhang H X, Tan Z J, Zhang Q L, Sheng R, Xiao H A (2009). Advances of DGGE/TGGE technique for soil microbial diversity study. Acta Agric Nucl Sin , 23(4): 721–727 (in Chinese)
36 Zhao X Q, Yang L Y, Chen C, Xiao L, Jiang L J, Ma Z, Zhu H W, Yu Z Y, Yin D Q (2008). Microbial diversity in lake sediments detected by PCR-DGGE. Front Biol Chin , 3(3): 293–299 (in Chinese)
doi: 10.1007/s11515-008-0044-8
37 Zheng H X, Zhou L, Lan X L, Gao Z Q, Gao Y, Li Y (2008). Isolation and identification of endophytic bacteria from rhododendron and resistance determination. J Neijiang Normal Univ , 23: 267–269 (in Chinese)
No related articles found!
Full text