Please wait a minute...
Frontiers of Agriculture in China

ISSN 1673-7334

ISSN 1673-744X(Online)

CN 11-5729/S

Front Agric Chin    2011, Vol. 5 Issue (2) : 162-172    https://doi.org/10.1007/s11703-010-1040-8
REVIEW
The molecular characterization and function of miRNAs on mediation of target gene silencing in plants
Chengjin GUO1, Juntao GU2, Xiaojuan LI2, Wenjing LU2, Chunying MA1, Kai XIAO1()
1. College of Agronomy, Agricultural University of Hebei, Baoding 071001, China; 2. College of Life Science, Agricultural University of Hebei, Baoding 071001, China
 Download: PDF(195 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

MiRNAs belong to one type of noncoding RNAs involved in developmental regulation, genome maintenance, and defense in eukaryotes. In plants, the miRNAs are involved in many molecular interactions, including interfere with expression of mRNAs encoding factors that control developmental processes, stem cell maintenances, auxin responses, and other developmental and physiologic processes. In this paper, the molecular characterization and the functions of miRNAs on mediation of target gene silencing in plants have been overviewed. Further studies on the miRNAs will be helpful for elucidation of the molecular mechanism of post- transcriptional gene silencing in plants.

Keywords miRNAs      molecular characterization      RNA-induced silencing complex (RISC)      target gene     
Corresponding Author(s): XIAO Kai,Email:xiaokai@hebau.edu.cn   
Issue Date: 05 June 2011
 Cite this article:   
Chengjin GUO,Juntao GU,Xiaojuan LI, et al. The molecular characterization and function of miRNAs on mediation of target gene silencing in plants[J]. Front Agric Chin, 2011, 5(2): 162-172.
 URL:  
https://academic.hep.com.cn/fag/EN/10.1007/s11703-010-1040-8
https://academic.hep.com.cn/fag/EN/Y2011/V5/I2/162
1 Abelson J F, Kwan K Y, O’Roak B J, Baek D Y, Stillman A A, Morgan T M, Mathews C A, Pauls D L, Rasin M R, Gunel M, Davis N R, Ercan-Sencicek A G, Guez D H, Spertus J A, Leckman J F, Dure L S 4th, Kurlan R, Singer H S, Gilbert D L, Farhi A, Louvi A, Lifton R P, Sestan N, State M W (2005). Sequence variants in SLITRK1 are associated with Tourette’s syndrome. Science , 310(5746): 317–320
doi: 10.1126/science.1116502
2 Achard P, Herr A, Baulcombe D C, Harberd N P (2004). Modulation of floral development by a gibberellin-regulated microRNA. Development , 131(14): 3357–3365
doi: 10.1242/dev.01206
3 Adai A, Johnson C, Mlotshwa S, Archer-Evans S, Manocha V, Vance V, Sundaresan V (2005). Computational prediction of miRNAs in Arabidopsis thaliana. Genome Res , 15(1): 78–91
doi: 10.1101/gr.2908205
4 Allen E, Xie Z, Gustafson A M, Carrington J C (2005). microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell , 121(2): 207–221
5 Allen R D, Webb R P, Schake S A (1997). Use of transgenic plants to study antioxidant defenses. Free Radic Biol Med , 23(3): 473–479
doi: 10.1016/S0891-5849(97)00107-X
6 Altuvia Y, Landgraf P, Lithwick G, Elefant N, Pfeffer S, Aravin A, Brownstein M J, Tuschl T, Margalit H (2005). Clustering and conservation patterns of human microRNAs. Nucleic Acids Res , 33(8): 2697–2706
doi: 10.1093/nar/gki567
7 Apel K, Hirt H (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol , 55(1): 373–399
doi: 10.1146/annurev.arplant.55.031903.141701
8 Aukerman M J, Sakai H (2003). Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2-like target genes. Plant Cell , 15(11): 2730–2741
doi: 10.1105/tpc.016238
9 Axtell M J, Bartel D P (2005). Antiquity of microRNAs and their targets in land plants. Plant Cell , 17(6): 1658–1673
doi: 10.1105/tpc.105.032185
10 Bartels D, Sunka R (2005). Drought and salt tolerance in plants. CRC Crit. Rev. Plant Science , 24(1): 23–58
doi: 10.1080/07352680590910410
11 Baulcombe D (2004). RNA silencing in plants. Nature , 431(7006): 356–363
doi: 10.1038/nature02874
12 Bentwich I, Avniel A, Karov Y, Aharonov R, Gilad S, Barad O, Barzilai A, Einat P, Einav U, Meiri E, Sharon E, Spector Y, Bentwich Z (2005). Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet , 37(7): 766–770
doi: 10.1038/ng1590
13 Bernstein E, Caudy A A, Hammond S M, Hannon G J (2001). Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature , 409(6818): 363–366
doi: 10.1038/35053110
14 Bonnet E, Wuyts J, Rouzé P, Van de Peer Y (2004). Detection of 91 potential conserved plant microRNAs in Arabidopsis thaliana and Oryza sativa identifies important target genes. Proc Natl Acad Sci USA , 101(31): 11511–11516
doi: 10.1073/pnas.0404025101
15 Brennecke J, Hipfner D R, Stark A, Russell R B, Cohen S M (2003). Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell , 113(1): 25–36
16 Brennecke J, Stark A, Russell R B, Cohen S M (2005). Principles of microRNA-target recognition. PLoS Biol , 3(3): e85
doi: 10.1371/journal.pbio.0030085
17 Cai X, Hagedorn C H, Cullen B R (2004). Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA , 10(12): 1957–1966
18 Carmell M A, Xuan Z, Zhang M Q, Hannon G J (2002). The Argonaute family: tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis. Genes Dev , 16(21): 2733–2742
doi: 10.1101/gad.1026102
19 Carrington J C, Ambros V (2003). Role of microRNAs in plant and animal development. Science , 301(5631): 336–338
doi: 10.1126/science.1085242
20 Chen C Z, Li L, Lodish H F, Bartel D P (2004). MicroRNAs modulate hematopoietic lineage differentiation. Science , 303(5654): 83–86
doi: 10.1126/science.1091903
21 Chen K, Rajewsky N (2006). Natural selection on human microRNA binding sites inferred from SNP data. Nat Genet , 38(12): 1452–1456
doi: 10.1038/ng1910
22 Chen X (2004). A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science , 303(5666): 2022–2025
doi: 10.1126/science.1088060
23 Chiou T J, Aung K, Lin S I, Wu C C, Chiang S F, Su C L (2006). Regulation of phosphate homeostasis by MicroRNA in Arabidopsis. Plant Cell , 18(2): 412–421
doi: 10.1105/tpc.105.038943
24 Clop A, Marcq F, Takeda H, Pirottin D, Tordoir X, Bibé B, Bouix J, Caiment F, Elsen J M, Eychenne F, Larzul C, Laville E, Meish F, Milenkovic D, Tobin J, Charlier C, Georges M (2006). A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat Genet , 38(7): 813–818
doi: 10.1038/ng1810
25 Cuellar T L, McManus M T (2005). MicroRNAs and endocrine biology. J Endocrinol , 187(3): 327–332
doi: 10.1677/joe.1.06426
26 Dolan L, Janmaat K, Willemsen V, Linstead P, Poethig S, Roberts K, Scheres B (1993). Cellular organisation of the Arabidopsis thaliana root. Development , 119(1): 71–84
27 Ehrenreich I M, Purugganan M D (2008). Sequence variation of MicroRNAs and their binding sites in Arabidopsis. Plant Physiol , 146(4): 1974–1982
doi: 10.1104/pp.108.116582
28 Eulalio A, Huntzinger E, Nishihara T, Rehwinkel J, Fauser M, Izaurralde E (2009). Deadenylation is a widespread effect of miRNA regulation. RNA , 15(1): 21–32
29 Fagard M, Boutet S, Morel J B, Bellini C, Vaucheret H (2000). AGO1, QDE-2, and RDE-1 are related proteins required for post-transcriptional gene silencing in plants, quelling in fungi, and RNA interference in animals. Proc Natl Acad Sci USA , 97(21): 11650–11654
doi: 10.1073/pnas.200217597
30 Fahlgren N, Howell M D, Kasschau K D, Chapman E J, Sullivan C M, Cumbie J S, Givan S A, Law T F, Grant S R, Dangl J L, Carrington J C, Shiu S H (2007). High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of MIRNA genes. PLoS ONE , 2(2): e219
doi: 10.1371/journal.pone.0000219
31 Fire A, Xu S, Montgomery M K, Kostas S A, Driver S E, Mello C C (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature , 391(6669): 806–811
doi: 10.1038/35888
32 Floyd S K, Bowman J L (2004). Gene regulation: ancient microRNA target sequences in plants. Nature , 428(6982): 485–486
doi: 10.1038/428485a
33 Foyer C H, Descourvieres P, Kunert K J (1994). Protection against oxygen radicals: An important defense mechanism studied in transgenic plants. Plant Cell Environ , 17(5): 507–523
doi: 10.1111/j.1365-3040.1994.tb00146.x
34 Foyer C H, Noctor G (2005). Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell , 17(7): 1866–1875
doi: 10.1105/tpc.105.033589
35 Friedman R C, Farh K K, Burge C B, Bartel D P (2009). Most mammalian mRNAs are conserved targets of microRNAs. Genome Res , 19(1): 92–105
doi: 10.1101/gr.082701.108
36 Gottwein E, Cai X, Cullen B R (2006). A novel assay for viral microRNA function identifies a single nucleotide polymorphism that affects Drosha processing. J Virol , 80(11): 5321–5326
doi: 10.1128/JVI.02734-05
37 Griffiths-Jones S (2004). The microRNA registry. Nucleic Acids Res , 32(90001 Database issue): D109–D111
38 Griffiths-Jones S, Grocock R J, van Dongen S, Bateman A, Enright A J (2006). miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res , 34(90001): 140–144
doi: 10.1093/nar/gkj112
39 Grosshans H, Slack F J (2002). Micro-RNAs: small is plentiful. J Cell Biol , 156(1): 17–21
doi: 10.1083/jcb.200111033
40 Grün D, Wang Y L, Langenberger D, Gunsalus K C, Rajewsky N (2005). microRNA target predictions across seven Drosophila species and comparison to mammalian targets. PLOS Comput Biol , 1(1): e13
doi: 10.1371/journal.pcbi.0010013
41 Hammond J P, Bennett M J, Bowen H C, Broadley M R, Eastwood D C, May S T, Rahn C, Swarup R, Woolaway K E, White P J (2003). Changes in gene expression in Arabidopsis shoots during phosphate starvation and the potential for developing smart plants. Plant Physiol , 132(2): 578–596
doi: 10.1104/pp.103.020941
42 Harfe B D, McManus M T, Mansfield J H, Hornstein E, Tabin C J (2005). The RNaseIII enzyme Dicer is required for morphogenesis but not patterning of the vertebrate limb. Proc Natl Acad Sci USA , 102(31): 10898–10903
doi: 10.1073/pnas.0504834102
43 Hawkins P G, Morris K V (2008). RNA and transcriptional modulation of gene expression. Cell Cycle , 7(5): 602–607
doi: 10.4161/cc.7.5.5522
44 Hiraguri A, Itoh R, Kondo N, Nomura Y, Aizawa D, Murai Y, Koiwa H, Seki M, Shinozaki K, Fukuhara T (2005). Specific interactions between Dicer-like proteins and HYL1/DRB-family dsRNA-binding proteins in Arabidopsis thaliana. Plant Mol Biol , 57(2): 173–188
doi: 10.1007/s11103-004-6853-5
45 Hunter C, Sun H, Poethig R S (2003). The Arabidopsis heterochronic gene ZIPPY is an ARGONAUTE family member. Curr Biol , 13(19): 1734–1739
doi: 10.1016/j.cub.2003.09.004
46 Jackson D, Veit B, Hake S (1994). Expression of maize KNOTTED1 related homeobox genes in the shoot apical meristem predicts patterns of morphogenesis in the vegetative shoot. Development , 120: 405–413
47 Jones-Rhoades M W, Bartel D P (2004). Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell , 14(6): 787-799
doi: 10.1016/j.molcel.2004.05.027
48 Jones-Rhoades M W, Bartel D P, Bartel B (2006). MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol , 57(1): 19–53
doi: 10.1146/annurev.arplant.57.032905.105218
49 Kasschau K D, Xie Z, Allen E, Llave C, Chapman E J, Krizan K A, Carrington J C (2003). P1/HC-Pro, a viral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA unction. Dev Cell , 4(2): 205–217
doi: 10.1016/S1534-5807(03)00025-X
51 Kawasaki H, Taira K (2004). MicroRNA-196 inhibits HOXB8 expression in myeloid differentiation of HL60 cells. Nucleic Acids Symp Ser (Oxf) , 48(48): 211–212
doi: 10.1093/nass/48.1.211
52 Kidner C A, Martienssen R A (2003). Macro effects of microRNAs in plants. Trends Genet , 19(1): 13–16
doi: 10.1016/S0168-9525(02)00011-2
53 Krek A, Grün D, Poy M N, Wolf R, Rosenberg L, Epstein E J, MacMenamin P, da Piedade I, Gunsalus K C, Stoffel M, Rajewsky N (2005). Combinatorial microRNA target predictions. Nat Genet , 37(5): 495–500
doi: 10.1038/ng1536
54 Kren B T, Wong P Y, Sarver A, Zhang X, Zeng Y, Steer C J (2009). MicroRNAs identified in highly purified liver-derived mitochondria may play a role in apoptosis. RNA Biol , 6(1): 65–72
doi: 10.4161/rna.6.1.7534
55 Kurihara Y, Takashi Y, Watanabe Y (2006). The interaction between DCL1 and HYL1 is important for efficient and precise processing of pri-miRNA in plant microRNA biogenesis. RNA , 12(2): 206–212
56 Kurihara Y, Watanabe Y (2004). Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions. Proc Natl Acad Sci USA , 101(34): 12753–12758
doi: 10.1073/pnas.0403115101
57 Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001). Identification of novel genes coding for small expressed RNAs. Science , 294(5543): 853–858
doi: 10.1126/science.1064921
58 Lagos-Quintana M, Rauhut R, Meyer J, Borkhardt A, Tuschl T (2003). New microRNAs from mouse and human. RNA , 9(2): 175–179
59 Lall S, Grün D, Krek A, Chen K, Wang Y L, Dewey C N, Sood P, Colombo T, Bray N, Macmenamin P, Kao H L, Gunsalus K C, Pachter L, Piano F, Rajewsky N (2006). A genome-wide map of conserved microRNA targets in C. elegans. Curr Biol , 16(5): 460–471
doi: 10.1016/j.cub.2006.01.050
60 Lau N C, Lim L P, Weinstein E G, Bartel D P (2001). An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science , 294(5543): 858–862
doi: 10.1126/science.1065062
61 Laufs P, Peaucelle A, Morin H, Traas J (2004). MicroRNA regulation of the CUC genes is required for boundary size control in Arabidopsis meristems. Development , 131(17): 4311–4322
doi: 10.1242/dev.01320
62 Lee C T, Risom T, Strauss W M (2007). Evolutionary conservation of microRNA regulatory circuits: an examination of microRNA gene complexity and conserved microRNA-target interactions through metazoan phylogeny. DNA Cell Biol , 26(4): 209–218
doi: 10.1089/dna.2006.0545
63 Lee R C, Ambros V (2001). An extensive class of small RNAs in Caenorhabditis elegans. Science , 294(5543): 862–864
doi: 10.1126/science.1065329
64 Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, R?dmark O, Kim S, Kim V N (2003). The nuclear RNase III Drosha initiates microRNA processing. Nature , 425(6956): 415–419
65 Lee Y, Kim M, Han J, Yeom K H, Lee S, Baek S H, Kim V N (2004). MicroRNA genes are transcribed by RNA polymerase II. EMBO J , 23(20): 4051–4060
doi: 10.1038/sj.emboj.7600385
66 Lewis B P, Burge C B, Bartel D P (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell , 120(1): 15–20
67 Lewis B P, Shih I H, Jones-Rhoades M W, Bartel D P, Burge C B (2003). Prediction of mammalian microRNA targets. Cell , 115(7): 787–798
68 Li A, Mao L (2007). Evolution of plant microRNA gene families. Cell Res , 17(3): 212–218
69 Lim L P, Lau N C, Garrett-Engele P, Grimson A, Schelter J M, Castle J, Bartel D P, Linsley P S, Johnson J M (2005). Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature , 433(7027): 769–773
doi: 10.1038/nature03315
70 Lim L P, Lau N C, Weinstein E G, Abdelhakim A, Yekta S, Rhoades M W, Burge C B, Bartel D P (2003). The microRNAs of Caenorhabditis elegans. Genes Dev , 17(8): 991–1008
doi: 10.1101/gad.1074403
71 Liu B, Li P C, Li X, Liu C Y, Cao S Y, Chu C C, Cao X F (2005). Loss of function of OsDCL1 affects microRNA accumulation and causes developmental defects in rice. Plant Physiol , 139(1): 296–305
doi: 10.1104/pp.105.063420
72 Llave C, Kasschau K D, Rector M A, Carrington J C (2002). Endogenous and silencing-associated small RNAs in plants. Plant Cell , 14(7): 1605–1619
doi: 10.1105/tpc.003210
73 Llave C, Xie Z, Kasschau K D, Carrington J C (2002). Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science , 297(5589): 2053–2056
doi: 10.1126/science.1076311
74 Lu C, Fedoroff N V (2000). A mutation in the Arabidopsis HYL1 gene encoding a dsRNA binding protein affects responses to abscisic acid, auxin, and cytokinin. Plant Cell , 12(12): 2351–2366
75 Lu C, Tej S S, Luo S, Haudenschild C D, Meyers B C, Green P J (2005). Elucidation of the small RNA component of the transcriptome. Science , 309(5740): 1567–1569
doi: 10.1126/science.1114112
76 Lund E, Güttinger S, Calado A, Dahlberg J E, Kutay U (2004). Nuclear export of microRNA precursors. Science , 303(5654): 95–98
doi: 10.1126/science.1090599
77 Lynn K, Fernandez A, Aida M, Sedbrook J, Tasaka M, Masson P, Barton M K (1999). The PINHEAD/ZWILLE gene acts pleiotropically in Arabidopsis development and has overlapping functions with the ARGONAUTE1 gene. Development , 126(3): 469–481
78 Mallory A C, Bartel D P, Bartel B (2005). MicroRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes. Plant Cell , 17(5): 1360–1375
doi: 10.1105/tpc.105.031716
79 Mazière P, Enright A J (2007). Prediction of microRNA targets. Drug Discov Today , 12(11-12): 452–458
doi: 10.1016/j.drudis.2007.04.002
80 McHale N A, Koning R E (2004). MicroRNA-directed cleavage of Nicotiana sylvestris PHAVOLUTA mRNA regulates the vascular cambium and structure of apical meristems. Plant Cell , 16(7): 1730–1740
doi: 10.1105/tpc.021816
81 Millar A A, Gubler F (2005). The Arabidopsis GAMYB-like genes, MYB33 and MYB65, are microRNA-regulated genes that redundantly facilitate anther development. Plant Cell , 17(3): 705–721
doi: 10.1105/tpc.104.027920
82 Misson J, Raghothama K G, Jain A, Jouhet J, Block M A, Bligny R, Ortet P, Creff A, Somerville S, Rolland N, Doumas P, Nacry P, Herrerra-Estrella L, Nussaume L, Thibaud M C (2005). A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation. Proc Natl Acad Sci USA , 102(33): 11934–11939
doi: 10.1073/pnas.0505266102
83 Mittler R (2002). Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci , 7(9): 405–410
doi: 10.1016/S1360-1385(02)02312-9
84 Molnár A, Schwach F, Studholme D J, Thuenemann E C, Baulcombe D C (2007). miRNAs control gene expression in the single-cell alga Chlamydomonas reinhardtii. Nature , 447(7148): 1126–1129
doi: 10.1038/nature05903
85 Morel J B, Godon C, Mourrain P, Béclin C, Boutet S, Feuerbach F, Proux F, Vaucheret H (2002). Fertile hypomorphic ARGONAUTE (ago1) mutants impaired in post-transcriptional gene silencing and virus resistance. Plant Cell , 14(3): 629–639
doi: 10.1105/tpc.010358
86 Mourrain P, Béclin C, Elmayan T, Feuerbach F, Godon C, Morel J B, Jouette D, Lacombe A M, Nikic S, Picault N, Rémoué K, Sanial M, Vo T A, Vaucheret H (2000).Arabidopsis SGS2 and SGS3 genes are required for posttranscriptional gene silencing and natural virus resistance. Cell , 101(5): 533–542
87 Moussian B, Schoof H, Haecker A, Jürgens G, Laux T (1998). Role of the ZWILLE gene in the regulation of central shoot meristem cell fate during Arabidopsis embryogenesis. EMBO J , 17(6): 1799–1809
doi: 10.1093/emboj/17.6.1799
88 Moxon S, Jing R, Szittya G, Schwach F, Rusholme Pilcher R L, Moulton V, Dalmay T (2008). Deep sequencing of tomato short RNAs identifies microRNAs targeting genes involved in fruit ripening. Genome Res , 18(10): 1602–1609
doi: 10.1101/gr.080127.108
89 Palatnik J F, Allen E, Wu X, Schommer C, Schwab R, Carrington J C, Weigel D (2003). Control of leaf morphogenesis by microRNAs. Nature , 425(6955): 257–263
doi: 10.1038/nature01958
90 Park W, Li J, Song R, Messing J, Chen X (2002). CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr Biol , 12(17): 1484–1495
doi: 10.1016/S0960-9822(02)01017-5
92 Pasquinelli A E, Reinhart B J, Slack F, Martindale M Q, Kuroda M I, Maller B, Hayward D C, Ball E E, Degnan B, Müller P, Spring J, Srinivasan A, Fishman M, Finnerty J, Corbo J, Levine M, Leahy P, Davidson E, Ruvkun G (2000). Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature , 408(6808): 86–89
doi: 10.1038/35040556
93 Peragine A, Yoshikawa M, Wu G, Albrecht H L, Poethig R S (2004). SGS3 and SGS2/SDE1/RDR6 are required for juvenile development and the production of trans-acting siRNAs in Arabidopsis. Genes Dev , 18(19): 2368–2379
doi: 10.1101/gad.1231804
94 Poirier Y, Bucher M (2002). Phosphate transport and homeostasis in Arabidopsis. In: Somerville C R, Meyerowitz E M, eds. The Arabidopsis Book . Rockville, MD: American Society of Plant Biologists
95 Poy M N, Eliasson L, Krutzfeldt J, Kuwajima S, Ma X, Macdonald P E, Pfeffer S, Tuschl T, Rajewsky N, Rorsman P, Stoffel M (2004). A pancreatic islet-specific microRNA regulates insulin secretion. Nature , 432(7014): 226–230
doi: 10.1038/nature03076
96 Raghothama K G (1999). Phosphate acquisition. Annu Rev Plant Physiol Plant Mol Biol , 50(1): 665–693
doi: 10.1146/annurev.arplant.50.1.665
97 Rajagopalan R, Vaucheret H, Trejo J, Bartel D P (2006). A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev , 20(24): 3407–3425
doi: 10.1101/gad.1476406
98 Reinhart B J, Weinstein E G, Rhoades M W, Bartel B, Bartel D P (2002). MicroRNAs in plants. Genes Dev , 16(13): 1616–1626
doi: 10.1101/gad.1004402
99 Rhoades M W, Reinhart B J, Lim L P, Burge C B, Bartel B, Bartel D P (2002). Prediction of plant microRNA targets. Cell , 110(4): 513–520
100 Rodriguez A, Griffiths-Jones S, Ashurst J L, Bradley A (2004). Identification of mammalian microRNA host genes and transcription units. Genome Res , 14(10A): 1902–1910
doi: 10.1101/gr.2722704
101 Sabatini S, Beis D, Wolkenfelt H, Murfett J, Guilfoyle T, Malamy J, Benfey P, Leyser O, Bechtold N, Weisbeek P, Scheres B (1999). An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell , 99(5): 463–472
102 Saunders M A, Liang H, Li W H (2007). Human polymorphism at microRNAs and microRNA target sites. Proc Natl Acad Sci USA , 104(9): 3300–3305
doi: 10.1073/pnas.0611347104
103 Schauer S E, Jacobsen S E, Meinke D W, Ray A (2002). DICER-LIKE1: blind men and elephants in Arabidopsis development. Trends Plant Sci , 7(11): 487–491
doi: 10.1016/S1360-1385(02)02355-5
104 Schwab R, Palatnik J F, Riester M, Schommer C, Schmid M, Weigel D (2005). Specific effects of microRNAs on the plant transcriptome. Dev Cell , 8(4): 517–527
doi: 10.1016/j.devcel.2005.01.018
105 Sunkar R, Girke T, Jain P K, Zhu J K (2005). Cloning and characterization of microRNAs from rice. Plant Cell , 17(5): 1397–1411
doi: 10.1105/tpc.105.031682
106 Sunkar R, Kapoor A, Zhu J K (2006). Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell , 18(8): 2051–2065
doi: 10.1105/tpc.106.041673
107 Sunkar R, Zhu J K (2004). Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell , 16(8): 2001–2019
doi: 10.1105/tpc.104.022830
108 Tan Y, Zhang B, Wu T, Skogerbθ G, Zhu X, Guo X, He S, Chen R (2009). Transcriptional inhibition of Hoxd4 expression by miRNA-10a in human breast cancer cells. BMC Mol Biol , 10(1): 12–17
doi: 10.1186/1471-2199-10-12
109 Tanzer A, Stadler P F (2004). Molecular evolution of a microRNA cluster. J Mol Biol , 339(2): 327–335
doi: 10.1016/j.jmb.2004.03.065
110 Tijsterman M, Ketting R F, Plasterk R H (2002). The genetics of RNA silencing. Annu Rev Genet , 36(1): 489–519
doi: 10.1146/annurev.genet.36.043002.091619
111 Vaucheret H, Vazquez F, Crété P, Bartel D P (2004). The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Genes Dev , 18(10): 1187–1197
doi: 10.1101/gad.1201404
112 Vazquez F, Vaucheret H, Rajagopalan R, Lepers C, Gasciolli V, Mallory A C, Hilbert J L, Bartel D P, Crété P (2004). Endogenous trans-acting siRNAs regulate the accumulation of Arabidopsis mRNAs. Mol Cell , 16(1): 69–79
doi: 10.1016/j.molcel.2004.09.028
114 Voinnet O, Pinto Y M, Baulcombe D C (1999). Suppression of gene silencing: a general strategy used by diverse DNA and RNA viruses of plants. Proc Natl Acad Sci USA , 96(24): 14147–14152
doi: 10.1073/pnas.96.24.14147
115 Volpe T A, Kidner C, Hall I M, Teng G, Grewal S I, Martienssen R A (2002). Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science , 297(5588): 1833–1837
doi: 10.1126/science.1074973
116 Wang J W, Wang L J, Mao Y B, Cai W J, Xue H W, Chen X Y (2005). Control of root cap formation by MicroRNA-targeted auxin response factors in Arabidopsis. Plant Cell , 17(8): 2204–2216
doi: 10.1105/tpc.105.033076
117 Wang X J, Reyes J L, Chua N H, Gaasterland T (2004). Prediction and identification of Arabidopsis thaliana microRNAs and their mRNA targets. Genome Biol , 5(9): R65
doi: 10.1186/gb-2004-5-9-r65
118 Wasaki J, Yonetani R, Kurodas S, Shinano T, Yazaki J, (2003). Transcriptomic analysis of metabolic changes by phosphorus stress in rice plant roots. Plant Cell Environ , 26(9): 1515–1523
doi: 10.1046/j.1365-3040.2003.01074.x
119 Waterhouse P M, Graham M W, Wang M B (1998). Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proc Natl Acad Sci USA , 95(23): 13959–13964
doi: 10.1073/pnas.95.23.13959
120 Weber M J (2005). New human and mouse microRNA genes found by homology search. FEBS J , 272(1): 59–73
doi: 10.1111/j.1432-1033.2004.04389.x
121 Wilfred B R, Wang W X, Nelson P T (2007). Energizing miRNA research: a review of the role of miRNAs in lipid metabolism, with a prediction that miR-103/107 regulates human metabolic pathways. Mol Genet Metab , 91(3): 209–217
doi: 10.1016/j.ymgme.2007.03.011
122 Williams A E (2008). Functional aspects of animal microRNAs. Cell Mol Life Sci , 65(4): 545–562
doi: 10.1007/s00018-007-7355-9
123 Williams L, Grigg S P, Xie M, Christensen S, Fletcher J C (2005). Regulation of Arabidopsis shoot apical meristem and lateral organ formation by microRNA miR166g and its AtHD-ZIP target genes. Development , 132(16): 3657–3668
doi: 10.1242/dev.01942
124 Wu F, Yu L, Cao W G, Mao Y F, Liu Z Y, He Y (2007). The N-terminal double-stranded RNA binding domains of Arabidopsis HYPONASTIC LEAVES1 are sufficient for pre-microRNA processing. Plant Cell , 19(3): 914–925
doi: 10.1105/tpc.106.048637
125 Wu P, Ma L, Hou X, Wang M, Wu Y, Liu F, Deng X W (2003). Phosphate starvation triggers distinct alterations of genome expression in Arabidopsis roots and leaves. Plant Physiol , 132(3): 1260–1271
doi: 10.1104/pp.103.021022
126 Xie Z, Kasschau K D, Carrington J C (2003). Negative feedback regulation of Dicer-Like1 in Arabidopsis by microRNA-guided mRNA degradation. Curr Biol , 13(9): 784–789
doi: 10.1016/S0960-9822(03)00281-1
127 Yi R, Qin Y, Macara I G, Cullen B R (2003). Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev , 17(24): 3011–3016
doi: 10.1101/gad.1158803
128 Zhou G K, Kubo M, Zhong R, Demura T, Ye Z H (2007). Overexpression of miR165 affects apical meristem formation, organ polarity establishment and vascular development in Arabidopsis. Plant Cell Physiol , 48(3): 391–404
doi: 10.1093/pcp/pcm008
129 Zhou X, Ruan J, Wang G, Zhang W (2007). Characterization and identification of microRNA core promoters in four model species. PLOS Comput Biol , 3(3): e37
doi: 10.1371/journal.pcbi.0030037
130 Zilberman D, Cao X, Jacobsen S E (2003). ARGONAUTE4 control of locus-specific siRNA accumulation and DNA and histone methylation. Science , 299(5607): 716–719
doi: 10.1126/science.1079695
131 Zilberman D, Cao X, Johansen L K, Xie Z, Carrington J C, Jacobsen S E (2004). Role of Arabidopsis ARGONAUTE4 in RNA-directed DNA methylation triggered by inverted repeats. Curr Biol , 14(13): 1214–1220
doi: 10.1016/j.cub.2004.06.055
[1] Jincai LI, Yongsheng ZHANG, Juntao GU, Chengjin GUO, Shumin WEN, Guiru LIU, Kai XIAO. Molecular characterization and roles of AP2 transcription factors on drought tolerance in plants[J]. Front Agric Chin, 2011, 5(4): 463-472.
[2] Wenjing LU, Jincai LI, Fangpeng LIU, Juntao GU, Chengjin GUO, Liu XU, Huiyan ZHANG, Kai XIAO. Expression pattern of wheat miRNAs under salinity stress and prediction of salt-inducible miRNAs targets[J]. Front Agric Chin, 2011, 5(4): 413-422.
[3] Chengjin GUO, Wensuo CHANG, Juntao GU, Xiaojuan LI, Wenjing LU, Kai XIAO. Molecular characterization, transcriptional regulation and function analysis of nitrate transporters in plants[J]. Front Agric Chin, 2011, 5(3): 291-298.
[4] Ruijuan LI, Wenjing LU, Jinfeng ZHAO, Chengjin GUO, Kai XIAO, Chuanfan SUN, . Biochemical properties, molecular characterizations, functions, and application perspectives of phytases[J]. Front. Agric. China, 2010, 4(2): 195-209.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed