Please wait a minute...
Frontiers of Agriculture in China

ISSN 1673-7334

ISSN 1673-744X(Online)

CN 11-5729/S

Front Agric Chin    2010, Vol. 4 Issue (4) : 507-512     DOI: 10.1007/s11703-010-1048-0
Effect of various dietary vitamin A levels on growth performance and immune response of tilapia (Oreochromis niloticus)
Ran GUO1,2(), Chhorn LIM2, Hui XIA1,2, Mediha Yildirim AKSOR2, Menghe LI3
1. Ocean College, Agricultural University of Hebei, Qinhuangdao 066000, China; 2. Aquatic Animal Health Research Laboratories, Agricultural Research Service, USDA, 990 Wire Road, Auburn, AL, 36830, USA; 3. Thad Cochran National Warmwater Aquaculture Center, Mississippi State University, Stoneville, MS 38776 USA
Download: PDF(125 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

Six purified vitamin-free casein-based diets were formulated to contain six levels vitamin A at 0, 500, 1000, 2000, 4000, and 8000 IU·kg-1, respectively. Tilapias (initial mean weight: 7.73±0.03 g) were fed the diets in quadruplicate aquaria to apparent satiation twice daily for 10 weeks. No differences in mortality, weight gain, or feed efficiency ratio (FER) were observed among the groups. Liver vitamin A levels reflected dietary vitamin A levels. Immune parameters, such as hemoglobin levels, total cell count, red blood cell count, total serum protein, and serum lysozyme activity, did not vary with the dietary vitamin A levels. White blood cell counts of fish in 2000 IU·kg-1 diet groups were significantly higher than that in other diets groups. Serum complement activities of fish in 2000 and 4000 IU·kg-1 vitamin A diet groups were also higher than those in other diet groups. After the 14-d challenge test, the mortality and antibody titer were similar among the treatments. The results indicated that dietary vitamin A inclusions did not affect the immune response of Oreochromis niloticus.

Keywords vitamin A      health      immune response      tilapia (Oreochromis niloticus)     
Corresponding Authors: GUO Ran,   
Issue Date: 05 December 2010
URL:     OR
ingredientspercent in diet
casein vitamin-free32
cod liver oil3
soybean oil3
mineral premix14
vitamin premix2 (vitamin A free)1
CMC (carboxymethyl cellulose sodium)3
analyzed nutrients
crude protein/%35.6
crude fat/%5.6
estimated digestible energy/kcal·g-13.2
Tab.1  Percentage composition and estimated nutrient content of basal diet (g·kg)
vitamin A added/ (IU·kg-1)weight gain/%dry matter feed intake/(g·fish-1)FER3survival/%
Tab.2  Mean final weight gain per fish, survival, and FER (feed efficiency ratio) of tilapia fed diets containing various levels of vitamin A
vitamin A added/(IU·kg-1)serum protein/(mg·mL-1)lysozyme/(mg·mL-1)alternative complement AH50/(unit·mL-1)antibody titer
Tab.3  Mean alternative complement activity, lysozyme and serum protein of tilapia fed diets containing various levels of vitamin A for 10 weeks, and antibody titer after the 14-day challenge
vitamin A added/ (IU·kg-1)hematocrit/%total cell count/(106·μL-1)red blood cell/(106·μL-1)white blood cell/(105·μL-1)hemoglobin/(g·dL-1)
Tab.4  Mean total cell count, red blood cell count, white blood cell, hemoglobin, and hematocrit of tilapia fed diets containing various levels of vitamin A for 10 weeks
vitamin A added/(IU·kg-1)cumulative mortality/%
Tab.5  Mean cumulative mortality of tilapia fed diets containing various levels of vitamin A at 14 d postimmersion challenge with
vitamin A added/(IU·g-1)vitamin A content in diet/(IU·g-1)vitamin A content in liver/(IU·g-1)
Tab.6  Mean vitamin A content of livers of tilapia after 10 weeks of feeding diets containing various levels of vitamin A
Fig.1  Mean vitamin A content of liver of tilapia after 10 weeks of feeding diets containing various levels of vitamin A
1 Amar E C, Kiron V, Satoh S, Watanabe T (2001). Influence of various dietary synthetic carotenoids on bio-defence mechanisms in rainbow trout, Oncorhynchus mykiss (Walbaum). Aquacult Res , 32: 162–173
2 Bahl R, Kumar R, Bhandari N, Kant S, Srivastava R, Bhan M K (1999). Vitamin A administered with measles vaccine to 9-month-old infants does not reduce vaccine immunogenicity. J Nutr , 129: 69–73
3 Benn C S, Aaby P, Balé C, Olsen J, Michaelsen K F, George E, Whittle H (1997). Randomised trial of effect of vitamin A supplementation on antibody response to measles vaccine in Guinea-Bissau, west Africa. Lancet , 350(9071): 101–105
4 Brown B A (1988). Routin Hematology Procedures. In: Brown B A, ed. Hematology: Principles and Procedures. Leo and Febiger, Philadelphia, PA , 7–122
5 Chen M F, Light T S (1994). Specificity of the channel catfish antibody to Edwardsiella ictaluri. J Aquat Anim Health , 6(3): 226–270
6 Cuesta A, Ortu?o J, Rodriguez A, Esteban M A, Meseguer J (2002). Changes in some innate defence parameters of seabream (Sparus aurata L.) induced by retinol acetate. Fish Shellfish Immunol , 13(4): 279–291
7 Estevez A, Kanazawa A (1995). Effect of n-3 PUFA and vitamin A Artemia enrichment on pigmentation success of turbot, Scopthalmus maximum (L.). Aquacult Nutr , 1(3): 159–168
8 Halver J E (1989). The Vitamins. In: Halver J E, ed. Fish Nutrition , 2nd ed. San Diego, California, USA: Academic Press, 32–109
9 Hemre G I, Mangor-Jesen A, Rosenlund G, Lie O (1994). Organ distribution of vitamins A and E during the broodstock. Phase of female turbot (Scophthalmus maximus). Fiskeridir Skr (Havunders) , 6: 141–149
10 Hemre G I, Deng D F, Wilson R P, Berntssen M H G (2004). Vitamin A metabolism and early biological responses in juvenile sunshine bass (Morone chrysops×M. saxatilis) fed graded levels of vitamin A. Aquaculture , 235(1–4): 645–658
11 Hilton J W (1983). Hypervitaminosis A in rainbow trout (Salmo gairdneri): toxicity signs and maximum tolerable level. J Nutr , 113(9): 1737–1745
12 Hu C J, Chen S M, Pan C H, Huang C H (2006). Effects of dietary vitamin A or β-carotene concentrations on growth of juvenile hybrid tilapia, Oreochromis niloticus×O. aureus. Auqaculture , 253(1–4): 602–607
13 Larsen H N (1964). Comparison of various methods of hemoglobin detection of channel catfish blood. Prog. Fish-Culture , 26(1): 11–15
14 Litwack G (1955). Photometric determination of lysozyme activity. Proc Soc Exp Biol Med , 89(3): 401–403
15 Moren M, Opstad I, Berntssen M H G, Zambonino Infante J L, Hamre K (2004). An optimum level of vitamin A supplements for Atlantic halibut (Hippoglossus hippoglossus L.) juveniles. Aquaculture , 235(1–4): 578–599
16 NRC (National Research Council) (1993): Nutrient Requirements of Fish. Washington, DC: National Academy Press, 114
17 ?rnsrud R, Graff I E, Hoie S, Totland G K, Hemre G I (2002). Hypervitaminosis A in first-feeding fry of the Atlantic salmon (Salmo salar L.). Aquacult Nutr , 8(1): 7–13
18 Rock C L (1997). Carotenoids: Biology and Treatment. Phannncol. Ther , 75: 185–197
19 Ross A C, H?mmerling U G (1994). Retinoids and the immune system. In: Sporn M B, Roberts A B, Goodman D S, eds. The retioids: biology, chemistry and medicine, second edition . New York: Raven Press, 521–43
20 Santiago C B, Gonzal A C (2000). Effect of prepared diet and vitamins A, E and C supplementation on the reproductive performance of cage-reared bighead carp Aristichthys nobilis (Richardson). J Appl Ichthyology , 16(1): 8–13
21 Semba R D (1994). Vitamin A, immunity, and infection. Clin Infect Dis , 19(3): 489–499
22 Semba R D, Akib A, Beeler J, Munasir Z, Permaesih D, Muherdiyantiningsih, Komala, Martuti S, Muhilal (1997). Effect of vitamin A supplementation on measles vaccination in nine-month-old infants. Public Health , 111(4): 245–247
23 Storebakken T, No H K, Choubert G (1993). Interrelationship between astaxanthin and bitamin in Atlantic salmon. In: Kaushik S J, Luquet P, eds. Fish Nutricion in Practice. IV Int. Symp. Fish Nutrition and Feeding, Biarritz, France, June 1991 . INRA, Paris (Les Colloques No. 61), 345–347
24 Takeuchi T, Dedi J, Haga Y, Seikai T, Watanabe T (1998). Effect of vitamin A compounds on bone deformity in larval Japanese founder (Paralichthys olivaceus). Aquaculture , 169(3–4): 155–165
25 Thompson I, Fletcher T C, Houlihan D F, Secombes C J (1994). The effect of dietary vitamin A on the immunocompetence of Atlantic salmon (Salmo salar L.). Fish Physiol Biochem , 12(6): 513–523
doi: 10.1007/BF00004453
26 Thompson I, Choubert G, Houlihan D F, Secombes C J (1995). The effect of dietary vitamin A and astaxanthin on the immunocompetence of rainbow trout. Aquaculture , 133(2): 91–102
doi: 10.1016/0044-8486(95)00024-V
27 Torrissen O J (1989). Pigmentation of salmonids: Interaction of astaxanthin and canthaxanthin on pigment deposition in rainbow trout. Aquaculture , 79(1–4): 363–374
doi: 10.1016/0044-8486(89)90478-X
28 Tsushima M, Ikuno Y, Nagata S, Kodama K, Matsuno T (2002). Comparative biochemical studies of carotenoids in catfishes. Comp Biochem Physiol B Biochem Mol Biol , 133(3): 331–336
doi: 10.1016/S1096-4959(02)00159-8
[1] Xingxing WANG, Fei ZHONG, Nan LI, Dongmei HAN, Sumin PAN, Xiujin LI, . Strategies for enhancing DNA vaccine potency by targeting antigen-presenting cells[J]. Front. Agric. China, 2009, 3(4): 478-485.
[2] Anchun CHENG,Mingshu WANG,Xiwen CHEN,Nigen XINI,Wenbo DOU,Xuemei LI,Wumei LIU,Gang WANG,Pingying ZHANG. Cellular immune responses of BALB/c mice induced by intramuscular injection of PRRSV-ORF5 DNA vaccine with different doses[J]. Front. Agric. China, 2007, 1(1): 105-110.
Full text