Please wait a minute...
Frontiers of Agriculture in China

ISSN 1673-7334

ISSN 1673-744X(Online)

CN 11-5729/S

Front Agric Chin    2011, Vol. 5 Issue (1) : 35-39     DOI: 10.1007/s11703-011-1050-1
Induced mutations in chickpea-morphological mutants
Samiullah KHAN(), Kouser PARVEEN, Sonu GOYAL
Mutation Breeding Laboratory, Department of Botany, Aligarh Muslim University, Aligarh-202002(UP), India
Download: PDF(215 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

Seeds of two varieties (PUSA-212 and BG-256) of chickpea (BoldItalic L.) were treated with 0.03% concentration of hydrazine hydrate (HZ), methylmethane sulphonate (MMS) and sodium azide (SA) for 6 h. The M2 generation was grown from single plant M1 progeny seeds. Five morphological mutants (dwarf, bushy, one sided branch, narrow leaf and gigas) were isolated in M2 generation. Some of these mutants may be directly used in selection whereas some are useful in combination breeding programs.

Keywords Cicer arietinum L.      chemical mutagens      morphological mutants     
Corresponding Authors: KHAN Samiullah,   
Issue Date: 05 March 2011
URL:     OR
mutagen typeNo. of M2 plantNo. of mutants scoredtotal No. of mutantfrequency/%
Tab.1  Frequency of morphological mutants in various mutagens in M generation
mutant typevarietyNo. of mutants/totalNo. of M2 plantfrequency/%
dwarf mutantPusa-212BG-2566/7505/7840.800.64
bushy mutantPusa-212BG-2564/750*3/784*0.530.38
one sided branch mutantPusa-212BG-2564/7500/7840.53
narrow leaf mutantPusa-212BG-25610/7508/7841.331.02
gigas mutantPusa-212BG-2566/7508/7840.801.02
Tab.2  Frequency and spectrum of morphological mutants observed in chickpea varieties Pusa-212 and BG-256 in M generation
Fig.1  Plate-1
Note: 1-5 represent control plant, dwarf mutant, bushy mutant, one side branch mutant, narrow leaf mutant, respectively.
1 Ahmad S, Godward M B E (1993). Gamma radiation induced mutations in Cicer arietinum L. Acta Botanica Indica , 21: 1–8
2 Argikar G P (1952). Occurrence and inheritance of Filicoid form in Cicer arietinum L. Curr Sci , 21: 76
3 Argikar G P, D’Cruz R (1963). Genetic studies in gram. Journal of Indian Botanical Society , 42: 401–405
4 Arulbalachandran D, Mullainathan L (2009). Chlorophyll and morphological mutants of blackgram (Vigna mungo (L.) Hepper) derived by gamma rays and EMS. J Phytol , 1(4): 236–241
5 Athwal D S (1963). Some x-ray induced and spontaneous mutations in Cicer. Indian Journal of Genetics and Plant Breeding , 23: 50–57
6 Bahl P N (1987). Cytology of chickpea. In: Saxena M C, Singh K B, eds. The Chickpea. Willingford, England: CAB International , 830–887
7 Chaudhary B B, Argikar G P (1957). Occurrence and inheritance of the fasciculifolia form in Cicer arietinum L. Curr Sci , 26: 395–396
8 Davis L A, Addicott F T (1972). Abscisic Acid: correlations with abscission and with development in the cotton fruit. Plant Physiol , 49(4): 644–648
doi: 10.1104/pp.49.4.644
9 Davis T M, Foster K W, Phillips D A (1985). Nodulation mutants in chickpea. Crop Sci , 25: 345–348
doi: 10.2135/cropsci1985.0011183X002500020033x
10 Davis T M, Matthews L J, Fagerberg W R (1990). Comparison of tetraploid and single gene induced gigas variants in chickpea (Cicer arietinum) I. Origin and genetic characterization. American Journal of Botany , 77(3): 295–299
doi: 10.2307/2444715
11 Ekbote R B (1937). Mutations in gram (Cicer arietinum L.). Curr Sci , 5: 648–649
12 FAO (2002). Statistical Databases.
13 Gaur P M, Gour V K (2003). Broad-few-leaflets and outwardly curved wings: two new mutants of chickpea. Plant Breed , 122(2): 192–194
doi: 10.1046/j.1439-0523.2003.00807.x
14 Hedens P (2003). The genes of the green revolution. Trends Genet , 19(1): 5–9
doi: 10.1016/S0168-9525(02)00009-4
15 Jeswani L M (1986). Breeding strategies for the improvement of pulse crops. Indian Journal of Genetics and Plant Breeding , 46(Suppl): 267–280
16 Khan M H, Tyagi S D (2010). Induced morphological mutants in soybean (Gylcine max (L.) Merrill). Front Agric China , 4(2): 175–180
doi: 10.1007/s11703-009-0086-y
17 Khan S, Wani M R, Bhat M D, Parveen K (2004). Induction of morphological mutants in chickpea. International Chickpea and Pigeonpea Newsletter , 11: 6–7
18 Kleinhofs A, Warne R L, Muehlbauer F S, Nilan R (1978). Induction and selection of specific gene mutation in Hordeum and Pisum. Mutation Research , 51(1): 29–35
doi: 10.1016/0027-5107(78)90005-2
19 Konzak C F, Woo S C, Dickey J (1969). An induced dominant semi dwarf plant height mutation in spring wheat. Wheat Information Service , 28: 10
20 Micke A (1988). Genetic improvement of food legumes in developing countries by mutation induction. In: Summer field R J, ed. World Crops: Cool Season Food Legumes . Dordrecht, the Netherlands: Kluwer Academic Publishers, 1031–1047
21 Naik B S, Singh B, Kole C (2002). A promising mungbean (Vigna radiata (L.) Wilczek) genotype with high protein content and seed yield. Indian Journal of Genetics and Plant Breeding , 62(4): 342–344
22 Nevers P, Shepherd N, Saedler H (1986). Plant transposable elements. Adv Bot Res , 12: 103–203
doi: 10.1016/S0065-2296(08)60194-9
23 Patil J A (1959). Inheritance study in gram. Curr Sci , 28: 508
24 Peterson P A (1986). Mobile elements in maize. Plant Breed Rev , 4: 82–122
25 Pundir R P S, Reddy G V (1998). Two new traits – open flower and small leaf in chickpea (Cicer arietinum L.). Euphytica , 102(3): 357–361
doi: 10.1023/A:1018307709788
26 Pundir R P S, Mengesha M H, Reddy K N (1990). Leaf types and their genetics in chickpea (Cicer arietinum L.). Euphytica , 45:197–200
27 Reddy V R K, Gupta P K (1988). Induced mutations in hexaploid triticale. Frequency and spectrum of morphological mutants. Genet Agr , 42: 241–254
28 Rekha K, Kak S N, Langer A (2000). EMS induced variability in Artemisia pallens Wall. Indian Journal of Plant Genet Resour , 13(1): 37–41
29 Rubio J, Flores F, Moreno M T, Cubero J I, Gil J (2004). Effects of the erect/bushy habit single/double pod and late /early flowering genes on yield and seed size and their stability in chickpea. Field Crops Research , 90(2-3): 255–262
doi: 10.1016/j.fcr.2004.03.005
30 Shakoor A, Sadiq M S, Hasan M U, Saleem M (1978). Selection for useful semidwarf mutants through induced mutations in bread wheat. Proc 5th Int Wheat Genet Symp, New Delhi, Vol I, Feb 23-28: 540–546
31 Shimizu-Sato S, Mori H (2001). Control of outgrowth and dormancy in axillary buds. Plant Physiol , 127(4): 1405–1413
doi: 10.1104/pp.010841
32 Singh H B, Bhagchandani P M (1953). Genetics of leaf mutations in gram. Indian Journal of Genetics and Plant Breeding , 13: 106–109
33 Solanki I S, Sharma B (2002). Induced polygenic variability in different groups of mutagenic damage in lentil (Lens culinaris Medik). Indian Journal of Genetics and Plant Breeding , 62(2): 135–139
34 Stebbins L G (1971). Chromosomal evolution in higher plants. Addison Wesley Reading M A
35 Suganthy C P, Reddy V R K, Edwin R (1994). Mutation breeding in some cereals IV. Biological parameters. Adv Plant Sci , 7: 1–11
36 Toker C, Cagirgan M I (2004). Spectrum and frequency of induced mutations in chickpea. International Chickpea and Pigeonpea Newsletter , 11: 8–10
37 Varshney R K, Siddiqui B A (1997). Effects of thiourea in M1 generation of bread wheat (Triticum aestivum L.). Journal of Indian Botanical Society , 76: 165–168
38 Wani R (2007). Studies on the induction of mutations in mungbean (Vigna radiata (L.) Wilczek). , Aligarh Muslim University, Aligarh
39 Weber E, Gottschalk W (1973). Die Beziehungen Zwischen Zellgrobe und Internodienlange bei Strahleninduzierten Pisum. Mutanten Beitr Biol Pfl , 49: 101–126
[1] Mohd Rafiq WANI, Samiullah KHAN, Mohammad Imran KOZGAR. Induced chlorophyll mutations. I. Mutagenic effectiveness and efficiency of EMS, HZ and SA in mungbean[J]. Front Agric Chin, 2011, 5(4): 514-518.
[2] Mudasir Hafiz KHAN, Sunil Dutt TYAGI, . Induced morphological mutants in soybean [ Glycine max (L.) Merrill][J]. Front. Agric. China, 2010, 4(2): 175-180.
Full text