Please wait a minute...
Frontiers of Agriculture in China

ISSN 1673-7334

ISSN 1673-744X(Online)

CN 11-5729/S

Front Agric Chin    0, Vol. Issue () : 106-121    https://doi.org/10.1007/s11703-011-1062-x
RESEARCH ARTICLE
Structure, diversity, and regeneration potential of Monotheca buxifolia (Falc.) A. DC. dominated forests of Lower Dir District, Pakistan
Nasrullah KHAN(), Moinuddin AHMED, Syed Shahid SHAUKAT, Muhammad WAHAB, Muhammad Faheem SIDDIQUI
Laboratory of Dendrochronology and Plant Ecology Department of Botany Federal Urdu University of Arts, Science & Technology, Gulshan-e-Iqbal Karachi 75300, Pakistan
 Download: PDF(514 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This study reports on the multivariate analysis of the vegetation of Hindukush Range in Pakistan, concentrating on the structure and regeneration potential of BoldItalic and associated tree species. Twenty stands at different locations in the Dir District of the Hindukush Range in Pakistan were chosen for the study. A point centered quarter method for trees and 5 m × 5 m size quadrats were used for the sampling of understorey vegetation, including shrubs, seedlings, and saplings, respectively. The underlying group structure in vegetation was exposed by an agglomerative clustering technique, while major trends were disclosed by DCA ordination. Size class structure and regeneration potential of BoldItalic and associated tree species were also examined, which reflects the future trend of species and, consequently, the forests where they dominate. The relationships between environmental factors and vegetation were investigated.

The arboreal vegetation was mostly dominated by broad leaved species including BoldItalic, BoldItalic, BoldItalic, BoldItalic, BoldItalic. Among the understorey vegetation, the abundant species were BoldItalic, BoldItalic, BoldItalic, BoldItalic, BoldItalic, BoldItalic, BoldItalic, BoldItalic, BoldItalic, BoldItalic, BoldItalic, BoldItalic, BoldItalic seedlings of BoldItalic, BoldItalic, and BoldItalic. At the seedling and sapling stage, the maximum number was observed for BoldItalic (27±5.75 and 38±7.1), followed by BoldItalic (18±2.2 and 12±1.0) and BoldItalic. As far as regeneration status is concerned, 34% species showed good regeneration, 50% species were facing the problem of poor regeneration while, and only 16% species were not regenerating. Five groups of tree vegetation that emerged from Ward’s cluster analysis could readily be superimposed on DCA ordination. These groups were associated with particular elevation and, to a lesser extent, with edaphic variables, such as pH and nutrients. Some of the topographic and edaphic variables, such as soil nutrient, showed significant or weak linear relationships with one or more ordination axes. The size class structure of BoldItalic and associated tree species for individual stands exhibited a few gaps. Relationships between density and basal area were significant, but the density and basal area with altitudinal and slope gradient showed an insignificant relation. Some recommendations are outlined for future research and sustainable management of these forests species.

Keywords cluster analysis      DCA ordination      regeneration potential      deteriorating forests      management plan      size class structure      vegetation description     
Corresponding Author(s): KHAN Nasrullah,Email:nasrullahdushkheli@yahoo.com   
Issue Date: 05 March 2011
 Cite this article:   
Nasrullah KHAN,Moinuddin AHMED,Syed Shahid SHAUKAT, et al. Structure, diversity, and regeneration potential of Monotheca buxifolia (Falc.) A. DC. dominated forests of Lower Dir District, Pakistan[J]. Front Agric Chin, 0, (): 106-121.
 URL:  
https://academic.hep.com.cn/fag/EN/10.1007/s11703-011-1062-x
https://academic.hep.com.cn/fag/EN/Y0/V/I/106
Fig.1  Map of Pakistan showing sampling area
forest standslocationlatitude Nlongitude Ealtitude/mslopeaspectcanopydominant speciesdensity/(trees·ha-1)basal area/(m2·ha-1)
1Porighar34° 7171° 82137027°Eopen1,221412.77
2Gidar34.70°71.67°137512°Eopen116216.84
3Shagokas34.65°71.60°138015°Wmoderate1,616119.83
4Doda34.70°71.68°140525°Eopen112011.71
5Deere34.43°71.53°142022°Eopen11108.40
6Zaar34.43°71.48°142210°Emoderate1,330533.51
7Gatko34.71°71.81°143432°Eopen1,516412.84
8Palosin34.68°71.79°144018°Eopen11399.91
9Chal Kamar34.70°71.65°145520°SEopen1,512312.92
10Pingal34.78°71.80°155526°Eopen1,518111.20
11Manogay34.70°71.77°156235°Eopen1,519113.97
12Sur Kamar34.70°71.80°156810°Eopen11369.46
13Karapa34.69°71.72°162518°Wopen1,2,319310.83
14Kattan Lower34.70°71.83°166022°Wopen1,2,3,422514.14
15Kattan Upper34.70°71.83°167013°Eopen1,2,315611.62
16Chinarono 134.70°71.81°142625°Eopen1,626819.22
17Chinarono 234.71°71.80°143622°Eopen1,623117.30
18Girotangay34.71°71.81°132217°Eopen1,617821.4
19Alami sir 134.70°71.80°170026°Wopen1,314715.72
20Alami sir 234.70°71.79°171417°Wopen1,329327.5
Tab.1  Characteristic features, dominant tree species, and absolute values of each sampling sites
tree speciesNSPIVI/% mean±SED/(trees·ha-1) mean±SEBA/(m2·ha-1) mean±SErank
1st2nd3rd
Monotheca buxifolia2082±3.9153±10.3916.06±3.282000
Olea ferruginea424±4.542.72±8.362.06±0.73040
Punica granatum618±5.428±9.13.18±1.74033
Acacia modesta423±3.732.13±5.643.58±0.45040
Ficus palmata14±0014.26±002.05±00000
Quercus baloot336±4.342±4.31.7±0.47030
Tab.2  Summary of phytosociological sampling of 20 stands, mean importance value (), absolute density (), basal area (), and order of dominance of and associated tree species
tree speciesdensity /(trees·ha-1) mean±SEseedlings·ha-1 mean±SEsaplings·ha-1 mean±SEchopped trees·ha-1 mean±SEstatus
Monotheca buxifolia153±10.3927±5.7538±7.1641±4.64G
Olea ferruginea42±8.3615±2.2517±3.149±3.56P
Punica granatum28±9.14±2.405±1.432±1.10P
Acacia modesta32±5.69±1.507±1.7913±2.19P
Quercus baloot42±4.328±2.522±2.117±2.2G
Ficus palmata14±0002±000N
Tab.3  Regeneration status and degree of disturbance of and associated tree species
S. No.community groupsspecies richness (d)diversity (H')equitability (J')simpson' s dominance (D)
1A0.275±0.030.222±0.040.245±0.090.565±0.03
2B0.2±000.36±000.675±0.020.7±0.02
3C0.2±0.10.35±0.030.516±0.010.583±0.01
4D0.135±0.010.09±0.050.135±0.220.911±0.05
5E0.2±000.33±0.010.48±0.010.63±0.03
Tab.4  Shannon diversity index of the four community types for woody species
Fig.2  Dendrogram resulting from Ward’s clustering of dominated 20 stands.
Note: Groups I-V are shown on the dendrogram
No.speciesGroup 1 (mean±SE)Group 2 (mean±SE)Group 3 (mean±SE)Group 4 (mean±SE)Group 5 (mean±SE)
1Monotheca buxifolia66.9±2.165±562.22±4.398.79±1.276.83±3.7
2Olea ferruginea24.1±4.5××××
3Punica granatum8.0±1.735±5×1.2±2.3×
4Ficus palmata1±00××××
5Acacia modesta××××23.15±3.7
6Quercus baloot××36.78±4.3××
Tab.5  Five groups derived from Ward’s cluster analysis of 20 stands and their average tree species composition (average importance value for each group)
No.speciesPNSrelative frequency/%
1Dodonea viscosa (L.) Jacq.2021.5-100
2Monotheca buxifolia (Falc.) A. DC.2011.2-70
3Otostegia limbata (Benth.) Boiss185.4-80
4Geranium rotundifolium L.,1810-80
5Fragaria nubicola Lindl. ex Lacaita177.5-20.6
6Justicia adhatoda L.1625-60
7Ajuga bracteosa Wall.ex Benth.,1635.5-75
8Rumex hastatus D.Don.145.6-18.5
9Indigofera gerardiana Wall ex Baker,1416.5-30
10Marrubium vulgare Linn.1210.4-50
11Artemisia vulgaris L.,127.5-15.5
12Plantago lanceolata Linn.116-25.6
13Daphne oleoides Schreb.1120-40
14Viola biflora L.,109.5-18
15Oxalis corniculata L.,95.5-10.6
16Silene conoidea L.,912.3-50
17Solanum nigram L.97.8-60
18Euphorbia helioscopia L.89.9-17
19Salvia moorcroftiana Wall.84.7-9
20Taraxicum officinale Weber.725-55.3
21Carthamus oxycantha M.B.76-9.8
22Convolvulus arvensis L.77.9-22
23Sonchus asper (Linn) Hill.733-64.5
24Verbascum thapsus L.73.3-9.8
25Malva neglecta Wall.611.8-26
26Punica granatum L.69.1-20.5
27Calendula officinalis L.62.4-16
28Ammi visnaga (Linn.)622-56
29Foeniculum vulgare Mill.617.5-44
30Onosma hispida Wall.ex G.Don.613.5-66
31Mallotus philppensis Mule66.6-28
32Rumex dentatus L.515-75
33Berberis lycium (Royle)59.6-27
34Capsella bursa-pastoris (Linn.) Medik55.5-44
35Acacia modesta Wall.514-40
36Cannabis sativa L.525-55.6
37Zanthoxylum armatum DC.52.3-10.5
38Quercus baloot Griff45.9-16
39Vicia sativa L.,425-58.3
40Olea ferruginea Royle.36.8-19.4
41Nerium oleander L.215-36.5
42Ficus palmata Forssk.140
Tab.6  Distribution of understorey species in sampling area
A
No.topographic variablesGroup 1 (mean±SE)Group 2 (mean±SE)Group 3 (mean±SE)Group 4 (mean±SE)Group 5 (mean±SE)
1elevation1581±711707±401414±171421±281501±33
2slope20±2.921.5±2.520.6±2.916±2.228±3.3
3aspect1.5±0.22±001.3±0.31±001±00
4canopy1±001±001.3±0.31.1±0.11±00
B
No.edaphic variablesGroup 1 (mean±SE)Group 2 (mean±SE)Group 3 (mean±SE)Group 4 (mean±SE)Group 5 (mean±SE)
1pH5.1±0.176.0±0.155.2±0.475.2±0.205.5±0.27
2water holding capacity42.2±1.9150.8±2.840.9±4.2237.3±1.9436.8±1.82
3soil moisture22±1.030±123.6±1.820.4±1.320.8±1.24
4salinity0.17±0.050.65±0.050.56±0.880.42±0.60.35±0.66
5conductivity190±0.7240±10156±28150±9167±20.7
C
No.soil nutrientsGroup 1 (mean±SE)Group 2 (mean±SE)Group 3 (mean±SE)Group 4 (mean±SE)Group 5 (mean±SE)
1organic matter (OM)8.2±0.539.4±0.557.9±0.737.2±0.356.9±0.67
2calcium0.7±0.020.51±0.060.21±0.050.54±0.10.32±0.12
3magnesium0.46±0.070.31±0.080.23±0.040.52±0.050.28±0.08
4sodium1.0±0.331.6±0.010.52±0.090.69±0.140.73±0.02
5potassium1.76±0.112.2±0.121.61±0.141.26±0.261.81±0.19
6nitrogen0.65±0.190.35±0.250.26±0.030.22±0.040.40±0.07
Tab.7  Five groups derived from Ward’s cluster analysis using tree vegetation data of 20 stands of dominated stands along with the mean values and standard error (mean±SE) of their topographic (A), edaphic (B), and soil nutrient (C) characteristics.
Fig.3  DCA ordination (axes 1, 2, and 3) of 2 stands surveyed
Note: The groups derived from Ward’s cluster analysis are superimposed on the ordination.
variablesaxis 1prob. levelaxis 2prob. levelaxis 3prob. level
topographic variableselevation0.603P<0.010.400P<0.050.479P<0.05
slope0.084ns0.143ns0.416P<0.05
aspect0.327ns0.431P<0.050.172ns
canopy0.293ns0.001ns0.363ns
edaphic variablessoil moisture0.145ns0.521P<0.010.243ns
pH0.147ns0.390P<0.10.393P<0.1
WHC0.304ns0.322ns0.223ns
salinity0.421P<0.050.513P<0.010.051P<0.01
conductivity0.480P<0.050.341ns0.275ns
soil nutrient variablesOM0.211ns0.307ns0.123ns
Ca+ +0.331ns0.047ns0.259ns
Mg+ +0.0.143ns0.081ns0.468P<0.05
Na+0.502P<0.010.090ns0.333ns
K+0.287ns0.209ns0.414P<0.05
total nitrogen0.419P<0.050.555P<0.010.128ns
Tab.8  correlation of 3 DCA ordination axes with following environmental variables of topography, edaphic, and soil nutrients
Fig.4  Size class structure in each forest stand.
1 Ahmed M (1984). Ecology and dendrochronology of Agathis austrilis in New Zealand, Dissertation for the Doctoral Degree.Auckland: University of Auckland
2 Ahmed M (1988a). Plant communities of some northern temperate forests of Pakistan. Pakistan Journal of Forestry , 38: 33-40
3 Ahmed M (1988b). Population studies of some planted tree species of Quetta. Journal of Pure Applied Sciences , 7: 25-29
4 Ahmed M,Nagi E E, Wang E L M (1990a). Present state of Juniper Rodhmallazi forest of Baluchistan, Pakistan. Pakistn Journal of Forestry, 227-236
5 Ahmed M (2008). Population dynamic Cedrus deodara from Himalayan range of Pakistan. Report (WWF), 1-65
6 Ahmed M, Ashfaq M, Amjad M, Saeed M (1991). Vegetation structure and dynamics of Pinus gerardiana forest in Balochistan, Pakistan. J Veg Sci , 2(1): 119-124
doi: 10.2307/3235904
7 Ahmed M, Hussain T, Sheikh A H, Hussain S S, Siddiqui M F (2006). Phytosociology and structure of Himalayan forest from different climatic zone of Pakistan. Pak J Bot , 38(2): 361-383
8 Ahmed M, Khan N, Wahab M, Hamza S, Siddiqui M F, Nazim K, Khan M U (2009). Vegetation structure of Olea ferruginea Royle forests of Lower Dir District of Pakistan. Pak J Bot , 41(6): 2683-2695
9 Ahmed M, Naqvi S H (2005). Tree-ring Chronologies of Picea smithiana (Wall). Boiss., and its quantitative Vegetational description from Himalayan range of Pakistan. Pak J Bot , 37(3): 697-707
10 Ahmed M, Shaukat S S, Buzdar A H (1990b). Population structure and dynamics of Juniperus excelsa in Balochistan, Pakistan. J Veg Sci , 1(2): 271-276
doi: 10.2307/3235664
11 Ahmed M, Shaukat S S, Siddiqui F M (2010). Multivariate analysis and dynamic of Cedrus deodara forests from Hindukush and Himalayan range of Pakistan. Acta Botanica (In press)
12 Alamgir K G (2004). A study on the condition, use, management and trends of major forest types in Chitral District
13 Ali H, Shah J, Jan A K (2008). Medicinal value of family Ranunculaceae of Dir District, Pakistan. Pak J Bot , 39(4): 1037-1044
14 Ali H, Shah J, Khan N (2007). Medicinal plants of Timergara Dir valley, Int J Biol Biotech , 4(2-3): 250-256
15 Ashton D E, Willis E J (1982). Antagonism in the regeneration of Eucalyptus regnans in the mature forest. In: Newman E L, ed. The Plant Community as a Working Mechanism. Oxford: Blackwell, 113-128
16 Barnes B V, Zak D R, Denton S R, Spurr S H (1997). Forest Ecology.4th ed. New York: John Wiley and Sons Inc
17 Burton P J, Mueller-Dombois D (1984). Response of Metrosidros polymorpha seedlings to experimental canopy opening. Ecology , 65: 779-791
18 Beg A R, Khan M H (1984). Some more plant communities and the future of dry oak forest zone in Swat valley. Pak J For , 34: 25-35
19 Block J, Treter U (2001). The limiting factors at the upper and lower forest limits in the mountain-woodland steppe of Northwest Mongolia Joachim Block and Uwe Treter. In: Kaennel Dobbertin M, Br?ker O U, eds. Proceedings of the International Conference on Tree Rings and People. Davos, 22-26
20 Cameron R J (1954). Mosaic or cyclical regeneration in North Island podocarp forests. New Zealand Journal of Forestry , 7: 55-67
21 Champion H, Seth S K, Khattak G M (1965). Forest types of Pakistan. Pakistan Forest Research Institute. Peshawar Bulletin No.7
22 Cheema M S Z A, Qadir S A (1973). Autecology of Acacia senegal (L.) Willd. Vegetatio , 27(1-3): 131-162
doi: 10.1007/BF02389344
23 Connell J H, Tracey J G, Webb L J (1984). Compensatory recruitment, growth and mortality, as factors maintaining rain forest tree diversity. Ecol Monogr , 54(2): 141-164
doi: 10.2307/1942659
24 Cottam G, Curtis J T (1956). The use of distance measures in phytosociological sampling. Ecology , 37(3): 451-460
doi: 10.2307/1930167
25 Cross J R (1981). The establishment of Rhododendron ponticum in the Killarney oak wood, S W. Ireland. J Ecol , 69(3): 807-824
doi: 10.2307/2259638
26 Curtis J T, McIntosh R P (1950). The interrelation of certain analytic and synthetic phytosociological characters. Ecology , 31(3): 434-455
doi: 10.2307/1931497
27 Eis S (1981). Effect of vegetative competition on regeneration of white spruce. Can J of For Res , 11(1): 1-8
doi: 10.1139/x81-001
28 Gairola S, Rawal R S, Todaria N P (2008). Forest vegetation patterns along an altitudinal gradient in sub-alpine zone of west Himalayan India. African Journal of Plant Science, 2(6): 042-048
29 Gauch H G Jr,Whittaker R H (1981). Hierarchical classification of community data. J Ecol , 69(2): 537-557
doi: 10.2307/2259682
30 Greig smith P (1983). Quantitative Plant Ecology.3rd ed. Oxford: Blackwell scientific, 359
31 Grubb P J, Lloyd J R, Pennington T D, Whitmore T C (1963). A comparison of mountain and lowland rainforest in Ecuador. I. The forest structure, physiognomy and floristic. J Ecol , 51(3): 567-601
doi: 10.2307/2257748
32 Halket J C (1981). Kauri forest management review. Unpublished report of New Zealand Forest Service, NZ
33 Hill M O, Gauch H G Jr (1980). Deterended correspondence analysis, an improved ordination technique. Vegetatio , 42(1-3): 47-58
doi: 10.1007/BF00048870
34 Horsley S B (1977). Allelopathic inhabitation of black cherry by fern, grass, golden rod and aster. Can J Res , 7(2): 205-216
doi: 10.1139/x77-030
35 Hussain F M, Ahmed M J, Durani, Shaheen G (1993). Phytosociology of the vanishing tropical dry deciduous forest in District Sawabi, Pakistan. I. Community analysis. Pak J Bot , 25(1): 51-66
36 Keen B A (1931). The Physical Properties of Soil.New York: Longman Green and Company, 380
37 Khan M L, Rai J P N, Tripathi R S (1987). Population structure of some tree species in disturbed and protected sub-tropical forests of north-east India. Acta Oecologia. Oecologia Applicata , 8: 247-255
38 Khan M L, Rai P N, Tripathi R S (1986). Regeneration and survival of tree seedlings and sprouts in tropical deciduous and sub-tropical forests of Meghalaya, India. For Ecol Managem , 14(4): 293-304
doi: 10.1016/0378-1127(86)90175-1
39 Khan N, Ahmed M, Wahab M, Ajaib M (2010a). Studies along an altitudinal gradient Monotheca buxifolia forest Lower Dir District, Pakistan. Pakistan Journal of Botany (In press)
40 Khan N, Ahmed M, Wahab M, Ajaib M (2010b). Phytosociology, structure and physiochemical analysis of soil in Quercus baloot Griff, Chitral District, Paksitan. Pak J Bot , 42(4): 2429-2441
41 Kharkwal G, Mehrotra P, Rawat Y S, Pangtey Y P S (2005). Phytodiversity and growth form in relation to altitudinal gradient in the Central Himalayan (Kumaun) region of India. Curr Sci , 89(5): 873-878
42 Manoj D, Dobhal A, Bhatt S, Kumar M (2008). Community structure and regeneration potential of natural forest site in Gangotri, India. J Basic Appl Sci , 4(1): 49-52
43 McCune B, Mefford M J (2006). Multivariate Analysis of Ecological Data. PC ORD Version 5.10 MjM- Software, Gleneden Beach, Oregon, USA
44 Menhinick E F (1964). A comparison of some species individual’s diversity indices applied to sample of field insects. Ecology , 45(4): 859-861
doi: 10.2307/1934933
45 Mueller-Dombois DEllenberg H (1974). Aims and Methods of Vegetation Ecology.New York: John Wiley & Sons Inc, 547
46 Nasir EAli S I (1972). Flora of West Pakistan.Karachi, Pakistan: Fakhri Printing Press, 1-1028
47 Omeja P, Obua J, Cunningham A B (2004). Regeneration, density and size class distribution of tree species used drum making in central Uganda. Afr J Ecol , 42(2): 129-136
doi: 10.1111/j.1365-2028.2004.00509.x
48 Orloci L, Kenkel N C (1985). Introduction to data analysis with examples from population and community ecology.Fairland, MD: International Co-operative Publishing House
49 Palmer J (1982). A dendrochronological study of Kauri (Agathis australis Salisb). Dissertation for the Master Degree, Auckland: University of Auckland
50 Pielou E C (1975). Ecological Diversity. New York: John Wiley, 165
51 Rice E E (1974). Allelopathy. New York: Academic press
52 Sagar R, Raghubanshi A S, Singh J S (2003). Tree species composition, dispersion and diversity along a disturbance gradient in a dry Tropical forest region of India. For Ecol Manage , 186(1-3): 61-71
doi: 10.1016/S0378-1127(03)00235-4
53 Sapkota I P (2009b). Species diversity, regeneration and early growth of sal forests in Nepal. Responses to inherent disturbance regime.DissertationTip Swedish University of Agriculture Sciences, Aalnarp
54 Sapkota I P, Tigabu M, Oden P C (2009a). Species diversity and regeneration of old-growth seasonally dry Shorea robusta forests following gap formation. Indra Prasad Sapkota, Mulualem Tigabu. J For Res , 20(1): 7-14
doi: 10.1007/s11676-009-0002-6
55 Shahina A G, Martin F (1998). Vegetation of Arabian Peninsula. Netherlands: Kluwer Academic Publisher, 74-75
56 Shannon C E, Wiener W (1963). The Mathematical Theory of Communication.Urbana: University of Illinois Press, 117
57 Siddiqui F M, Ahmed M, Wahab M, Khan N, Uzair K M, Kanwal N, Hussain S S (2009). Phytosociology of Pinus roxburghii Sargent. (Chir pine) in lesser Himalayan and Hindukush range of Pakistan. Pak J Bot , 41(5): 2357-2369
58 Simpson’s E H (1949). The measurement of diversity. Nature , 163-688
59 Siraj A Y (2009). Phytosociology of the selected graveyards from upper Swat. M Phil Thesis Department of Botany Kohat University of Arts, Science and Technology, 1-166
60 Stewart R E (1975). Allelopathic potential of western bracken. J Chem Ecol , 1(2): 161-169
doi: 10.1007/BF00987865
61 Sundriyal R C, Bisht N S (1988). Tree structure, regeneration potential and survival of seedlings and sprouts in high-mountane forests of the Garhwal Himalayas, India. Vegetatio , 75(1-2): 87-90
doi: 10.1007/BF00044630
62 Wahab M, Ahmed M, Khan N (2008). Phytosociology and dynamics of some pine forests of Afghanistan. Pak J Bot , 40(3): 1071-1079
63 Ward J H Jr (1963). Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58: 236-244
64 Watkinson A R (1997). Plant population dynamics. In: Crawley M J, ed. Plant Ecology. 2nd ed. Blackwell Science Ltd
[1] CHEN Fabo, YANG Kecheng, RONG Tingzhao, PAN Guangtang. Analysis of genetic diversity of maize hybrids in the regional tests in Sichuan and Southwest China[J]. Front. Agric. China, 2008, 2(2): 162-171.
[2] WANG Xingfen, MA Jun, YANG Shuo, ZHANG Guiyin, MA Zhiying. Assessment of genetic diversity among Chinese upland cottons with Fusarium and/or Verticillium wilts resistance by AFLP and SSR markers[J]. Front. Agric. China, 2007, 1(2): 129-135.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed