Please wait a minute...
Frontiers of Agriculture in China

ISSN 1673-7334

ISSN 1673-744X(Online)

CN 11-5729/S

Front Agric Chin    2011, Vol. 5 Issue (1) : 51-59     DOI: 10.1007/s11703-011-1065-7
RESEARCH ARTICLE |
Optimizing nitrogen levels combined with gibberellic acid for enhanced yield, photosynthetic attributes, enzyme activities, and artemisinin content of Artemisia annua
Tariq AFTAB(), M. Masroor A. KHAN, Mohd. IDREES, M. NAEEM, MOINUDDIN
Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh- 202 002, India
Download: PDF(297 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract  

BoldItalic L. is an aromatic-antibacterial herb that destroys malarial parasites, lowers fever, and checks bleeding, and from which the secondary compound of interest is artemisinin. It has become increasingly popular as an effective and safe alternative therapy against malaria, and its derivatives are effective against multidrug resistant BoldItalic strains. Nitrogen is required by the plants in the largest quantity and is most limiting where biomass production is desired. On the other hand, gibberellic acid plays an important role in flowering, growth, and development and also in other physiological and biochemical processes. The feasibility of foliar GA3 (75 mg·L-1) alone or with varying levels of soil applied nitrogen (40, 80, and 120 mg·kg-1 soil) was tested on BoldItalic in the present study. The application of GA3 proved effective in alleviating the growth, photosynthesis, and enzyme activities of BoldItalic. However, N levels combined with GA3 showed better responses, and further improvement in these parameters was observed. Furthermore, the most important task we were interested in was to increase the artemisinin content and its yield on a per plant basis. The N combination (80 mg·kg-1 soil) together with GA3 augmented the content (21.8% more) and yield (55.8% more); this is true for both the treated plants, which were more than the control.

Keywords Artemisia annua L.      artemisinin      gibberellic acid      nitrogen      photosynthesis     
Corresponding Authors: AFTAB Tariq,Email:tarik.alig@gmail.com   
Issue Date: 05 March 2011
URL:  
http://academic.hep.com.cn/fag/EN/10.1007/s11703-011-1065-7     OR     http://academic.hep.com.cn/fag/EN/Y2011/V5/I1/51
treatmentshoot length/cmshoot fresh weight/gshoot dry weight/gfresh leaf yield/gdry leaf yield/g
control105.3±1.03d507.5±7.32d195.3±2.56d314.2±4.22d124.8±2.14d
GA3131.7±1.22c519.6±7.28d201.9±2.84d319.8±4.21cd127.5±2.25d
GA3 + N40138.2±1.21b557.3±8.29c221.8±3.28c344.3±5.43c139.2±2.67c
GA3 + N80145.3±1.36a624.2±8.78a247.2±3.53a379.4±5.87a159.6±3.18a
GA3 + N120142.5±1.14b601.4±6.73b236.6±3.01b371.2±5.66b153.3±3.01b
Tab.1  Effect of GA and different N doses on growth attributes of L.
Fig.1  Effect of GA and different N doses on net photosynthetic rate (a), stomatal conductance (b), internal CO (c), and total chlorophyll content (d) of L.
Note: Bars showing different letters are not significantly different at ≤0.05, as determined by Duncan’s multiple range test. Error bars (┬) show .
Fig.2  Effect of GA and different N doses on nitrate reductase activity (a), carbonic anhydrase activity (b), and leaf-N content (c) of L.
Note: Bars showing different letters are significantly different at ≤0.05, as determined by Duncan’s multiple range test. Error bars (┬) show .
Fig.3  Effect of GA and different N doses on artemisinin content (a) and artemisinin yield (b) of L.
Note: Bars showing different letters are not significantly different at ≤0.05 as determined by Duncan’s multiple range test. Error bars (┬) show .
Fig.4  HPLC chromatogram showing the peaks of the artemisinin in control plants (a) and GA+N-treated plants (b)
1 Abdin M Z, Israr M, Rehman R U, Jain S K (2003). Artemisinin, a novel antimalarial drug: biochemical and molecular approaches for enhanced production. Planta Med , 69(4): 289-299
doi: 10.1055/s-2003-38871 pmid:12709893
2 Aftab T, Khan M M A, Idrees M, Naeem M, Ram M (2010b). Boron induced oxidative stress, antioxidant defense response and changes in artemisinin content in Artemisia annua L. J Agron Crop Sci , 196(6): 423-430
doi: 10.1111/j.1439-037X.2010.00427.x
3 Aftab T, Khan M M A, Idrees M, Naeem M, Singh M, Ram M (2010a). Stimulation of crop productivity, photosynthesis and artemisinin production in Artemisia annua L. by triacontanol and gibberellic acid application. J Plant Interact , 5(4): 273-281
doi: 10.1080/17429141003647137
4 Akhila A (2007). Metabolic engineering of biosynthetic pathways leading to isoprenoids: Mono- and sesquiterpenes in plastids and cytosol. J Plant Interact , 2(4): 195-204
doi: 10.1080/17429140701670953
5 Ashraf M, Ali Q, Iqbal Z (2006). Effect of nitrogen application rate on the content and composition of oil, essential oil and minerals in black cumin (Nigella sativa L.) seeds. J Sci Food Agric , 86(6): 871-876
doi: 10.1002/jsfa.2426
6 Buchanan B B, Gruissem W, Jones R L (2000). Biochemistry and Molecular Biology of Plants, American Society of Plant Physiologists. Rockville, Maryland
7 Davies M J, Atkinson C J, Burns C, Woolley J G, Hipps N A, Arroo R R J, Dungey N, Robinson T, Brown P, Flockart I, Hill C, Smith L, Bentley S (2009). Enhancement of artemisinin concentration and yield in response to optimization of nitrogen and potassium supply to Artemisia annua. Ann Bot (Lond) , 104(2): 315-323
doi: 10.1093/aob/mcp126 pmid:19483202
8 Duke S O, Paul R N (1993). Development and fine structure of the glandular trichomes of Artemisia annua L. Int J Plant Sci , 154(1): 107-118
doi: 10.1086/297096
9 Dwivedi R S, Randhawa N S (1974). Evaluation of rapid test for hidden hunger of zinc in plants. Plant Soil , 40(2): 445-451
doi: 10.1007/BF00011531
10 Fernandes M S, Rossiello R O P (1995). Mineral nitrogen in plant physiology and plant nutrition. Crit Rev Plant Sci , 14: 111-148
11 Ferreira J F S (2007). Nutrient deficiency in the production of artemisinin, dihydroartemisinic acid, and artemisinic acid in Artemisia annua L. J Agric Food Chem , 55(5): 1686-1694
doi: 10.1021/jf063017v pmid:17295513
12 Ferreira J F S, Laughlin J C, Delabays N, Magalh?es P M, de Magalh?es P M (2005). Cultivation and genetics of Artemisia annua L. for increased production of the antimalarial artemisinin. Plant Genetic Res , 3: 206-229
doi: 10.1079/PGR200585
13 Ferreira J F S, Simon J E, Janick J (1997). Artemisia annua: botany, horticulture and pharmacology. Hort Rev (Am Soc Hortic Sci) , 19: 319-371
14 Gautam A K, Kumar D, Shivay Y S, Mishra B N (2008). Influence of nitrogen levels and plant spacing on growth, productivity and quality of two inbred varieties and a hybrid of aromatic rice. Arch Agron Soil Sci , 54(5): 515-532
doi: 10.1080/03650340802283470
15 Georgios A, Dimou M, Flemetakis E, Plati F, Katinakis P, Drossopoulos J B (2004). Immunolocalization of carbonic anhydrase and phosphoenolpyruvate carboxylase in developing seeds of Medicago sativa. Plant Physiol Biochem 42: 181-186
16 Jaworski E G (1971). Nitrate reductase assay in intact plant tissues. Biochem Biophys Res Commun , 43(6): 1274-1279
doi: 10.1016/S0006-291X(71)80010-4 pmid:5106073
17 Khan N A, Ansari H R, Samiullah (1998). Effect of gibberellic acid spray during ontogeny of mustard on growth, nutrient uptake and yield characteristics. J Agron Crop Sci , 181(1): 61-73
doi: 10.1111/j.1439-037X.1998.tb00399.x
18 Khan N A, Mir R, Khan M, Javid S, Samiullah (2002). Effects of gibberellic acid spray on nitrogen yield efficiency of mustard growth with different nitrogen levels. Plant Growth Regul , 38(3): 243-247
doi: 10.1023/A:1021523707239
19 Khan R, Khan M M A, Singh M, Nasir S, Naeem M, Siddiqui M H, Mohammad F (2007). Gibberellic acid and triacontanol can ameliorate the opium yield and morphine production in opium poppy (Papaver somniferum L.). Acta Agric Scand B Soil Plant Sci , 57: 307-312
20 Klayman D L (1985). Qinghaosu (artemisinin): an antimalarial drug from China. Science , 228(4703): 1049-1055
doi: 3887571" target="_blank">10.1126/science. pmid:3887571 pmid:3887571
21 Kremsner P G, Krishna S (2004). Antimalarial combinations. Lancet , 364(9430): 285-294
doi: 10.1016/S0140-6736(04)16680-4 pmid:15262108
22 Lichtenthaler H K, Buschmann C (2001). Chlorophylls and carotenoids: measurement and characterization by UV-VIS spectroscopy. Curr Protoc Food Analyt Chem. John Wiley and Sons (New York), F4.3.1-F4.3.8
23 Lindner R C (1944). Rapid analytical methods for some of the common inorganic constitutes of plant tissues. Plant Physiol , 19(1): 76-89
doi: 10.1104/pp.19.1.76 pmid:16653905
24 Malaria R B (2004). Malaria in Africa. http://www.rbm.who.int/cmc_upload/0/000/015/ 370/ RBMInfosheet _3.htm
25 Marschner H (2002). Mineral Nutrition of Higher Plants, 2nd ed. London: Academic Press
26 Meshnick S R, Jefford C W, Posner G H, Avery M A, Peters W (1996). Second-generation antimalarial endoperoxides. Parasitol Today , 12(2): 79-82
doi: 10.1016/0169-4758(96)80660-0 pmid:15275260
27 Mohammad F, Khan T, Afridi R M, Fatma A (1997). Effect of nitrogen on carbonic anhydrase activity, stomatal conductance, net photosynthetic rate and yield of mustard. Photosynthetica , 34(4): 595-598
doi: 10.1023 /A:1006882016862
28 Nathawat N S, Kuhad M S, Goswami C L, Patel A L, Kumar R (2005). Nitrogen-metabolizing enzymes: effect of nitrogen sources and saline irrigation. J Plant Nutr , 28(6): 1089-1101
doi: 10.1081/PLN-200058911
29 Novozamsky I, Houba V J G, Eck R V, Vark V W (1983). A noval digestion technique for multi-element plant analysis. Commun Soil Sci Plant Anal , 14(3): 239-248
doi: 10.1080/00103628309367359
30 Ohlsson A B, Bjork L (1988). Effects of gibberellic acid on cardenolide accumulation by Digitalis lanata tissue cultures grown in light and darkness. J Plant Physiol , 133: 535-538
31 Ozguven M, Sener B, Orhan I, Sekerglu N, Kirpik M, Kartal M, Pesin I, Kaya Z (2008). Effects of varying nitrogen doses on yield, yield components and artemisinin content of Artemisia annua L. Ind Crops Prod , 27(1): 60-64
doi: 10.1016/j.indcrop.2007.07.012
32 Ries S K, Wert V (1977). Growth responses of rice seedlings to triacontanol in light and dark. Planta , 135(1): 77-82
doi: 10.1007/BF00387979
33 Ritchey K D, Ferreira J F S (2006). Short term response of Artemisia annua to Lime, P, K and N in a dystrophic soil. J Herbs Spices Med Plants , 12(1): 49-59
doi: 10.1300/J044v12n01_05
34 Roth-Bejerano N, Lips S H (1970). Hormonal regulation of nitrate reductase activity in leaves. New Phytol , 69(1): 165-169
doi: 10.1111/j.1469-8137.1970.tb04060.x
35 Sadowska A, Racka M, Staszkiewicz J, Sadowska M (1984). Effect of some growth substances upon rooting of cuttings, yield and alkaloid content of Catharanthus roseus. Acta Hortic , 144: 99-102
36 Salisbury F B, Ross C W (1992). Plant Physiology, 2nd ed. Wadsworth Publishing Company, Inc., Belmont
37 Santos B M, Morales-Payan J P, Stall W M, Dusky J A (1998). Effects of gibberrellic acid combinations on basil growth. Proc Soil Crop Sci Soc Fla , 57: 99-101
38 Sekeroglu N, Ozguven M (2006). Effects of different nitrogen doses and plant densities on yield and quality of Oenothera biennis L. grown in irrigated lowland and un-irrigated dryland conditions. Turk J Agric For , 30: 125-135
39 Shah S H, Ahmad I, Samiullah (2007). Responses of Nigella sativa to foliar application of gibberellic acid and kinetin. Biol Plant , 51(3): 563-566
doi: 10.1007/s10535-007-0123-8
40 Shukla A, Farooqi A H A, Shukla Y N, Sharma S (1992). Effect of triacontanol and chlormequat on growth, plant hormones and artemisinin yield in Artemisia annua L. Plant Growth Regul , 11(2): 165-171
doi: 10.1007/BF00024071
41 Siddiqui M H, Khan M N, Mohammad F, Khan M M A (2008). Role of nitrogen and gibberellin (GA3) in the regulation of enzyme activities and in osmoprotectant accumulation in Brassica juncea L. under salt stress. J Agron Crop Sci , 194(3): 214-224
doi: 10.1111/j.1439-037X.2008.00308.x
42 Singh M (2001). Effects of nitrogen, phosphorus and potassium nutrition on herb, oil and artemisinin yield of Artemisia annua under semi-arid tropical condition. J Med Arom Plant Sci , 20: 368-369
43 Singh N, Luthra R, Sangwan R S (1990). Oxidative pathway of essential oil biosynthesis in the developing Cymbopogon flexuosus leaf. Plant Physiol Biochem , 28: 703-710
44 Singh P, Srivastava N K, Mishra A, Sharma S (1999). Influence of ethereal and gibberellic acid on carbon metabolism, growth and essential oil accumulation in spearmint (Mentha spicata). Photosynthetica , 36(4): 509-517
doi: 10.1023/A:1007083802765
45 Taiz L, Zeiger E (2006). Plant Physiology,4th ed. Sinauer Associates Inc., Publishers, Sunderland, Massachusetts, USA
46 van Agtmael M A, Eggelte T A, van Boxtel C J (1999). Artemisinin drugs in the treatment of malaria: from medicinal herb to registered medication. Trends Pharmacol Sci , 20(5): 199-205
doi: 10.1016/S0165-6147(99)01302-4 pmid:10354615
47 von Wiren N, Gazzarrini S, Gojon A, Frommer W B (2000). The molecular physiology of ammonium uptake and retrieval. Curr Opin Plant Biol , 3(3): 254-261
doi: 10.1016/S1369-5266(00)00073-X pmid:10837267
48 Weathers P J, Bunk G, Mccoy M C (2005). The effect of phytohormones on growth and artemisinin production in Artemisia annua hairy roots. In Vitro Cell Dev Biol Plant , 41(1): 47-53
doi: 10.1079/IVP2004604
49 WHO (2006). WHO Guidelines for the Treatment of Malaria. World Health Organization
50 Yuan L, Xu D Q (2001). Stimulation effect of gibberellic acid short-term treatment on leaf photosynthesis related to the increase in Rubisco content in broad bean and soybean. Photosynth Res , 68(1): 39-47
doi: 10.1023/A:1011894912421 pmid:16228327
51 Zhang Y S, Ye H C, Liu B Y, Wang H, Li G F (2005). Exogenous GA3 and flowering induce the conversion of artemisinic acid to artemisinin in Artemisia annua plants. Russ J Plant Physiol , 52(1): 58-62
doi: 10.1007/s11183-005-0009-6
52 Zhao S S, Zeng M Y (1986). Determination of qinghaosuin in Artemisia annua L. by high performance liquid chromatography. Chinese J Pharma Anal , 6: 3-5
[1] Chengjin GUO, Jincai LI, Wensuo CHANG, Lijun ZHANG, Xirong CUI, Shuwen LI, Kai XIAO. Effects of chromosome substitution on the utilization efficiency of nitrogen, phosphorus, and potassium in wheat[J]. Front Agric Chin, 2011, 5(3): 253-261.
[2] Lihong WEI, Qiuxi ZHAI, . The dynamics and correlation between nitrogen, phosphorus, potassium and calcium in a hazelnut fruit during its development[J]. Front. Agric. China, 2010, 4(3): 352-357.
[3] Lanfang YANG, Jingjing YAN, Zucong CAI, . Effects of N-applications and photosynthesis of maize ( Zea mays L.) on soil respiration and its diurnal variation[J]. Front. Agric. China, 2010, 4(1): 42-49.
[4] Meiqiu ZHU, Ying WANG, Bingxiang LIU, Lili ZHANG, Hui WANG, Yuxin YUAN, Kejiu DU. Effects of aqueous leaf extracts of P. at different ages on the growth and photosynthetic characteristics[J]. Front Agric Chin, 2009, 3(2): 178-185.
[5] Yulin LIAO*, Xiangmin RONG*, Qiang LIU*, Meirong FAN, Jianwei PENG, Guixian XIE, Yulin LIAO, Shengxian ZHENG*, Meirong FAN*. Influences of nitrogen fertilizer application rates on radish yield, nutrition quality, and nitrogen recovery efficiency[J]. Front Agric Chin, 2009, 3(2): 122-129.
[6] Hongzhan Lü, Weili LIANG, Guiyan WANG, David J. CONNOR, Glyn M. RIMMINGTON. A simulation model assisted study on water and nitrogen dynamics and their effects on crop performance in the wheat-maize system: (II) model calibration, evaluation and simulated experimentation[J]. Front Agric Chin, 2009, 3(2): 109-121.
[7] WANG Xiaoying, HE Mingrong, LI Fei, LIU Yonghuan, ZHANG Honghua, LIU Chungang. Coupling effects of irrigation and nitrogen fertilization on grain protein and starch quality of strong-gluten winter wheat[J]. Front. Agric. China, 2008, 2(3): 274-280.
[8] DU Xiong, BIAN Xiuju, YANG Fucun, ZHANG Lifeng, ZHANG Weihong. Effects of plastic-film mulching and nitrogen application on forage-oriented maize in the agriculture-animal husbandry ecotone in North China[J]. Front. Agric. China, 2008, 2(3): 266-273.
[9] SHI Yu, YU Zhenwen. Effects of nitrogen fertilizer rates and ratios of base and topdressing on wheat yield, soil nitrate content and nitrogen balance[J]. Front. Agric. China, 2008, 2(2): 181-189.
[10] WANG Tian, WANG Suping, GUO Shirong, SUN Yanjun. Effects of exogenous spermidine on the photosynthesis of L. seedlings under rhizosphere hypoxia stress[J]. Front. Agric. China, 2008, 2(1): 55-60.
[11] YI Zhenxie, WANG Pu, TAO Hongbin, ZHANG Hongfang, SHEN Lixia. Effects of types and application rates of nitrogen fertilizer on the development and nitrogen utilization of summer maize[J]. Front. Agric. China, 2008, 2(1): 44-49.
[12] YANG Lanfang, CAI Zucong, QI Shihua. Effects of maize (Zea mays L.) growth and photosynthesis on δ13C in soil respiration[J]. Front. Agric. China, 2007, 1(4): 405-410.
[13] ZHANG Jianfu, Swapan K. Datta, WANG Guoying, XIE Huaan. Integration of C4-specific PPDK gene of maize to C3 rice and its characteristics in relation to photosynthesis[J]. Front. Agric. China, 2007, 1(3): 243-249.
[14] LI Wenrao, ZHANG Suiqi, SHAN Lun. Responsibility of non-stomatal limitations for the reduction of photosynthesis—response of photosynthesis and antioxidant enzyme characteristics in alfalfa (Medicago sativa L.) seedlings to water stress and rehydration[J]. Front. Agric. China, 2007, 1(3): 255-264.
[15] FAN Huaifu, GUO Shirong, JIAO Yansheng, ZHANG Runhua, LI Juan. Effects of exogenous nitric oxide on growth, active oxygen species metabolism, and photosynthetic characteristics in cucumber seedlings under NaCl stress[J]. Front. Agric. China, 2007, 1(3): 308-314.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed