Please wait a minute...
Frontiers of Agriculture in China

ISSN 1673-7334

ISSN 1673-744X(Online)

CN 11-5729/S

Front Agric Chin    2011, Vol. 5 Issue (2) : 187-195    https://doi.org/10.1007/s11703-011-1072-8
REVIEW
Plant mitogen-activated protein kinases and their roles in mediation of signal transduction in abiotic stresses
Ruijuan LI2, Chengjin GUO1, Xiaojuan LI2, Juntao GU2, Wenjing LU2(), Kai XIAO1()
1. College of Agronomy, Agricultural University of Hebei, Baoding 071001, China; 2. College of Life Sciences, Agricultural University of Hebei, Baoding 071001, China
 Download: PDF(162 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Mitogen-activated protein kinase (MAPK) cascade plays a central role in transfer information from diverse receptors/sensors to a wide range of cellular responses in plants. MAP kinases are organized into a complex network for efficient transmission of specific stimuli, including the abiotic stress signaling. In recent years, the mutants of loss-of-function and gain-of-function, and other additional tools are used to investigate the plant MAPK cascades. This review has summarized the recent progress on the MAPK cascade involved in mediation of the transduction of several pronounced abiotic stress signalings, such as salt, drought, low and high temperature, wound, hormone, and deficient nutrients. Currently, although part of the components of the MAPK cascade responding to the abiotic stresses have been identified, the integral molecular mechanisms of the abiotic stresses signaling transduction mediated via MAPK cascade are largely unknown and need to be elucidated further in the future.

Keywords MAP kinase      abiotic stress      signaling      signal transduction      molecular mechanism     
Corresponding Author(s): LU Wenjing,Email:xiaokai@hebau.edu.cn; XIAO Kai,Email:luwenjing@sohu.com   
Issue Date: 05 June 2011
 Cite this article:   
Ruijuan LI,Chengjin GUO,Xiaojuan LI, et al. Plant mitogen-activated protein kinases and their roles in mediation of signal transduction in abiotic stresses[J]. Front Agric Chin, 2011, 5(2): 187-195.
 URL:  
https://academic.hep.com.cn/fag/EN/10.1007/s11703-011-1072-8
https://academic.hep.com.cn/fag/EN/Y2011/V5/I2/187
Fig.1  The schematic diagram of MAPK cascade mediating the abiotic stress signaling transduction in plants.
1 Ahlfors R, Macioszek V, Rudd J, Brosché M, Schlichting R, Scheel D, Kangasj?rvi J (2004). Stress hormone-independent activation and nuclear translocation of mitogen-activated protein kinases in Arabidopsis thaliana during ozone exposure. Plant J , 40(4): 512–522
doi: 10.1111/j.1365-313X.2004.02229.x pmid:15500467
2 Apel K, Hirt H (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol , 55(1): 373–399
doi: 10.1146/annurev.arplant.55.031903.141701 pmid:15377225
3 Bartels S, Anderson J C, González Besteiro M A, Carreri A, Hirt H, Buchala A, Métraux J P, Peck S C, Ulm R (2009). MAP kinase phosphatase1 and protein tyrosine phosphatase1 are repressors of salicylic acid synthesis and SNC1-mediated responses in Arabidopsis. Plant Cell , 21(9): 2884–2897
doi: 10.1105/tpc.109.067678 pmid:19789277
4 Bergmann D C, Lukowitz W, Somerville C R (2004). Stomatal development and pattern controlled by a MAPKK kinase. Science , 304(5676): 1494–1497
doi: 10.1126/science.1096014 pmid:15178800
5 Blanco F A, Zanetti M E, Casalongué C A, Daleo G R (2006). Molecular characterization of a potato MAP kinase transcriptionally regulated by multiple environmental stresses. Plant Physiol Biochem , 44(5-6): 315–322
doi: 10.1016/j.plaphy.2006.05.005 pmid:16814558
6 Bogre L, Ligterink W, Meskiene I, Barker P J, Heberle-Bors E, Huskisson N S, Hirt H (1997). Wounding induces the rapid and transient activation of a specific MAP kinase pathway. Plant Cell , 9(1): 75–83
doi: 10.1105/tpc.9.1.75 pmid:12237344
7 Brader G, Djamei A, Teige M, Palva E T, Hirt H (2007). The MAP kinase kinase MKK2 affects disease resistance in Arabidopsis. Mol Plant Microbe Interact , 20(5): 589–596
doi: 10.1094/MPMI-20-5-0589 pmid:17506336
8 Burnett E C, Desikan R, Moser R C, Neill S J (2000). ABA activation of an MBP kinase in Pisum sativum epidermal peels correlates with stomatal responses to ABA. J Exp Bot , 51(343): 197–205
doi: 10.1093/jexbot/51.343.197 pmid:10938826
9 Chen Z, Gibson T B, Robinson F, Silvestro L, Pearson G, Xu B, Wright A, Vanderbilt C, Cobb M H (2001). MAP kinases. Chem Rev , 101(8): 2449–2476
doi: 10938826 pmid:11749383
10 Cobb M H, Goldsmith E J (1995). How MAP kinases are regulated. J Biol Chem , 270(25): 14843–14846
doi: 10.1074/jbc.270.25.14843 pmid:7797459
11 Davis R J (2000). Signal transduction by the JNK group of MAP kinases. Cell , 103(2): 239–252
doi: 10.1016/S0092-8674(00)00116-1 pmid:11057897
12 Droillard M J, Thibivilliers S, Cazalé A C, Barbier-Brygoo H, Laurière C (2000). Protein kinases induced by osmotic stresses and elicitor molecules in tobacco cell suspensions: two crossroad MAP kinases and one osmoregulation-specific protein kinase. FEBS Lett , 474(2-3): 217–222
doi: 10.1016/S0014-5793(00)01611-2 pmid:10838088
13 Gomi K, Ogawa D, Katou S, Kamada H, Nakajima N, Saji H, Soyano T, Sasabe M, Machida Y, Mitsuhara I, Ohashi Y, Seo S (2005). A mitogen-activated protein kinase NtMPK4 activated by SIPKK is required for jasmonic acid signaling and involved in ozone tolerance via stomatal movement in tobacco. Plant Cell Physiol , 46(12): 1902–1914
doi: 10.1093/pcp/pci211 pmid:16207744
14 Ichimura K, Mizoguchi T, Yoshida R, Yuasa T, Shinozaki K (2000). Various abiotic stresses rapidly activate Arabidopsis MAP kinases ATMPK4 and ATMPK6. Plant J , 24(5): 655–665
doi: 10.1046/j.1365-313x.2000.00913.x pmid:11123804
15 MAPK Group (2002). Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends Plant Sci , 7(7): 301–308
doi: 10.1016/S1360-1385(02)02302-6 pmid:12119167
16 Jiang J, Han S, Song C P (2007). SB202190 modulate salicylic acid-induced H2O2 generation in Vicia guard cells. Chin Bull Bot , 24(4): 444–451 (in Chinese)
17 Jonak C, Kiegerl S, Ligterink W, Barker P J, Huskisson N S, Hirt H (1996). Stress signaling in plants: a mitogen-activated protein kinase pathway is activated by cold and drought. Proc Natl Acad Sci USA , 93(20): 11274–11279
doi: 10.1073/pnas.93.20.11274 pmid:8855346
18 Jonak C, Ligterink W, Hirt H (1999). MAP kinases in plant signal transduction. Cell Mol Life Sci , 55(2): 204–213
doi: 10.1007/s000180050285 pmid:10188583
19 Jonak C, Nakagami H, Hirt H (2004). Heavy metal stress. Activation of distinct mitogen-activated protein kinase pathways by copper and cadmium. Plant Physiol , 136(2): 3276–3283
doi: 10.1104/pp.104.045724 pmid:15448198
20 Jonak C, Okrész L, B?gre L, Hirt H (2002). Complexity, cross talk and integration of plant MAP kinase signalling. Curr Opin Plant Biol , 5(5): 415–424
doi: 10.1016/S1369-5266(02)00285-6 pmid:12183180
21 Katou S, Kuroda K, Seo S, Yanagawa Y, Tsuge T, Yamazaki M, Miyao A, Hirochika H, Ohashi Y (2007). A calmodulin-binding mitogen-activated protein kinase phosphatase is induced by wounding and regulates the activities of stress-related mitogen-activated protein kinases in rice. Plant Cell Physiol , 48(2): 332–344
doi: 10.1093/pcp/pcm007 pmid:17218330
22 Knetsch M L W, Wang M, Snaar-Jagalska B E, Heimovaara-Dijkstra S (1996). Abscisic acid induces mitogen-activated protein kinase activation in barley aleurone protoplasts. Plant Cell , 8(6): 1061–1067
doi: 10.1105/tpc.8.6.1061 pmid:12239411
23 Kovtun Y, Chiu W L, Tena G, Sheen J (2000). Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci USA , 97(6): 2940–2945
doi: 10.1073/pnas.97.6.2940 pmid:10717008
24 Kumar D, Klessig D F (2000). Differential induction of tobacco MAP kinases by the defense signals nitric oxide, salicylic acid, ethylene, and jasmonic acid. Mol Plant Microbe Interact , 13(3): 347–351
doi: 10.1094/MPMI.2000.13.3.347 pmid:10707361
25 Lee M O, Cho K, Kim S H, Jeong S H, Kim J A, Jung Y H, Shim J, Shibato J, Rakwal R, Tamogami S, Kubo A, Agrawal G K, Jwa N S (2008). Novel rice OsSIPK is a multiple stress responsive MAPK family member showing rhythmic expression at mRNA level. Planta , 227(5): 981–990
doi: 10.1007/s00425-007-0672-2 pmid:18066586
26 Lin C W, Chang H B, Huang H J (2005). Zinc induces mitogen-activated protein kinase activation mediated by reactive oxygen species in rice roots. Plant Physiol Biochem , 43(10-11): 963–968
doi: 10.1016/j.plaphy.2005.10.001 pmid:16324848
27 Lu C, Han M H, Guevara-Garcia A, Fedoroff N V (2002). Mitogen-activated protein kinase signaling in postgermination arrest of development by abscisic acid. Proc Natl Acad Sci USA , 99(24): 15812–15817
doi: 10.1073/pnas.242607499 pmid:12434021
28 Lu W J, Li R J, Wang X Y, Li X J, Guo C J, Gu J T, Xiao K (2009). Cloning and expression analysis of a wheat Mitogen-activated protein kinase gene of TaMPK1a-1 that responding to deficient-Pi. Scientia Agric Sinica , 42(7): 2601–2607 (in Chinese)
29 Miles G P, Samuel M A, Zhang Y, Ellis B E (2005). RNA interference-based (RNAi) suppression of AtMPK6, an mitogen-activated protein kinase, results in hypersensitivity to ozone and misregulation of AtMPK3. Environ Pollut , 138(2): 230–237
doi: 10.1016/j.envpol.2005.04.017 pmid:15964670
30 Mizoguchi T, Irie K, Hirayama T, Hayashida N, Yamaguchi-Shinozaki K, Matsumoto K, Shinozaki K (1996). A gene encoding a mitogen-activated protein kinase kinase kinase is induced simultaneously with genes for a mitogen-activated protein kinase and an S6 ribosomal protein kinase by touch, cold, and water stress in Arabidopsis thaliana. Proc Natl Acad Sci USA , 93(2): 765–769
doi: 10.1073/pnas.93.2.765 pmid:8570631
31 Munnik T, Ligterink W, Meskiene I I, Calderini O, Beyerly J, Musgrave A, Hirt H (1999). Distinct osmo-sensing protein kinase pathways are involved in signalling moderate and severe hyper-osmotic stress. Plant J , 20(4): 381–388
doi: 10.1046/j.1365-313x.1999.00610.x pmid:10607291
32 Nakagami H, Pitzschke A, Hirt H (2005). Emerging MAP kinase pathways in plant stress signalling. Trends Plant Sci , 10(7): 339–346
doi: 10.1016/j.tplants.2005.05.009 pmid:15953753
33 Nakagami H, Soukupová H, Schikora A, Zársky V, Hirt H (2006). A Mitogen-activated protein kinase kinase kinase mediates reactive oxygen species homeostasis in Arabidopsis. J Biol Chem , 281(50): 38697–38704
doi: 10.1074/jbc.M605293200 pmid:17043356
34 Ning J, Yuan B, Xie K B, Hu H H, Wu C Q, Xiong L Z (2006). Isolation and identification of SA and JA inducible protein kinase gene OsSJMK1 in rice. Acta Genetica Sinica , 33(7): 625–633
doi: 10.1016/S0379-4172(06)60092-9 pmid:16875320
35 Ouaked F, Rozhon W, Lecourieux D, Hirt H (2003). A MAPK pathway mediates ethylene signaling in plants. EMBO J , 22(6): 1282–1288
doi: 10.1093/emboj/cdg131 pmid:12628921
36 Peng L X, Gu L K, Zheng C C, Li D Q, Shu H R (2006). Expression of MaMAPK gene in seedlings of Malus L. under water stress. Acta Biochim Biophys Sin (Shanghai) , 38(4): 281–286
pmid:16604268
37 Peng L X, Zheng C C, Li D Q, Gu L K, Shu H R (2003). Cloning and expression characteristics of MaMAPK gene of Malus micromalus. J Plant Physiol Mol Biol , 29(5): 431–436 (in Chinese)
38 Pitzschke A, Djamei A, Bitton F, Hirt H (2009). A major role of the MEKK1-MKK1/2-MPK4 pathway in ROS signalling. Mol Plant , 2(1): 120–137
doi: 10.1093/mp/ssn079 pmid:19529823
39 P?pping B, Gibbons T, Watson M D (1996). The Pisum sativum MAP kinase homologue (PsMAPK) rescues the Saccharomyces cerevisiae hog1 deletion mutant under conditions of high osmotic stress. Plant Mol Biol , 31(2): 355–363 8756598
doi: 10.1007/BF00021795
40 Reyna N S, Yang Y N (2006). Molecular analysis of the rice MAP kinase gene family in relation to Magnaporthe grisea infection. Mol Plant Microbe Interact , 19(5): 530–540
doi: 10.1094/MPMI-19-0530 pmid:16673940
41 Samuel M A, Ellis B E (2002). Double jeopardy: both overexpression and suppression of a redox-activated plant mitogen-activated protein kinase render tobacco plants ozone sensitive. Plant Cell , 14(9): 2059–2069
doi: 10.1105/tpc.002337 pmid:12215505
42 Samuel M A, Miles G P, Ellis B E (2000). Ozone treatment rapidly activates MAP kinase signalling in plants. Plant J , 22(4): 367–376
doi: 10.1046/j.1365-313x.2000.00741.x pmid:10849353
43 Sangwan V, Orvar B L, Beyerly J, Hirt H, Dhindsa R S (2002). Opposite changes in membrane fluidity mimic cold and heat stress activation of distinct plant MAP kinase pathways. Plant J , 31(5): 629–638
doi: 10.1046/j.1365-313X.2002.01384.x pmid:12207652
44 Seo S, Katou S, Seto H, Gomi K, Ohashi Y (2007). The mitogen-activated protein kinases WIPK and SIPK regulate the levels of jasmonic and salicylic acids in wounded tobacco plants. Plant J , 49(5): 899–909
doi: 10.1111/j.1365-313X.2006.03003.x pmid:17253983
45 Seo S, Okamoto M, Seto H, Ishizuka K, Sano H, Ohashi Y (1995). Tobacco MAP kinase: a possible mediator in wound signal transduction pathways. Science , 270(5244): 1988–1992
doi: 10.1126/science.270.5244.1988 pmid:8533090
46 Seo S, Sano H, Ohashi Y (1999). Jasmonate-based wound signal transduction requires activation of WIPK, a tobacco mitogen-activated protein kinase. Plant Cell , 11(2): 289–298
pmid:9927645
47 Suzuki N, Rizhsky L, Liang H, Shuman J, Shulaev V, Mittler R (2005). Enhanced tolerance to environmental stress in transgenic plants expressing the transcriptional coactivator multiprotein bridging factor 1c. Plant Physiol , 139(3): 1313–1322
doi: 10.1104/pp.105.070110 pmid:16244138
48 Takahashi F, Yoshida R, Ichimura K, Mizoguchi T, Seo S, Yonezawa M, Maruyama K, Yamaguchi-Shinozaki K, Shinozaki K (2007). The mitogen-activated protein kinase cascade MKK3-MPK6 is an important part of the jasmonate signal transduction pathway in Arabidopsis. Plant Cell , 19(3): 805–818
doi: 10.1105/tpc.106.046581 pmid:17369371
49 Teige M, Scheikl E, Eulgem T, Dóczi R, Ichimura K, Shinozaki K, Dangl J L, Hirt H (2004). The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis. Mol Cell , 15(1): 141–152
doi: 10.1016/j.molcel.2004.06.023 pmid:15225555
50 Usami S, Banno H, Ito Y, Nishihama R, Machida Y (1995). Cutting activates a 46-kilodalton protein kinase in plants. Proc Natl Acad Sci USA , 92(19): 8660–8664
doi: 10.1073/pnas.92.19.8660 pmid:11607579
51 Wang M M, Zhang Y, Wang J, Wu X L, Guo X Q (2007). A novel MAP kinase gene in cotton (Gossypium hirsutum L.), GhMAPK, is involved in response to diverse environmental stresses. J Biochem Mol Biol , 40(3): 325–332
pmid:17562283
52 Wang W, Vinocur B, Altman A (2003). Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta , 218(1): 1–14
doi: 10.1007/s00425-003-1105-5 pmid:14513379
53 Widmann C, Gibson S, Jarpe M B, Johnson G L (1999). Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev , 79(1): 143–180
pmid:9922370
54 Wu J Q, Hettenhausen C, Meldau S, Baldwin I T (2007). Herbivory rapidly activates MAPK signaling in attacked and unattacked leaf regions but not between leaves of Nicotiana attenuata. Plant Cell , 19(3): 1096–1122
doi: 10.1105/tpc.106.049353 pmid:17400894
55 Xing Y, Jia W, Zhang J (2008). AtMKK1 mediates ABA-induced CAT1 expression and H2O2 production via AtMPK6-coupled signaling in Arabidopsis. Plant J , 54(3): 440–451
doi: 10.1111/j.1365-313X.2008.03433.x pmid:18248592
56 Xiong L, Yang Y (2003). Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase. Plant Cell , 15(3): 745–759
doi: 10.1105/tpc.008714 pmid:12615946
57 Xu J, Li Y, Wang Y, Liu H, Lei L, Yang H, Liu G, Ren D (2008). Activation of MAPK kinase 9 induces ethylene and camalexin biosynthesis and enhances sensitivity to salt stress in Arabidopsis. J Biol Chem , 283(40): 26996–27006
doi: 10.1074/jbc.M801392200 pmid:18693252
58 Xu S C, Ding H D, Sang J R (2007). Reactive oxygen species, metabolism, and signal transduction in plant cells. Acta Botanica Yunnanica , 29(3): 355–365 (in Chinese)
59 Yeh C M, Chien P S, Huang H J (2006). Distinct signalling pathways for induction of MAP kinase activities by cadmium and copper in rice roots. J Exp Bot , 58(3): 659–671
doi: 10.1093/jxb/erl240 pmid:17259646
60 Yoo S D, Cho Y H, Tena G, Xiong Y, Sheen J (2008). Dual control of nuclear EIN3 by bifurcate MAPK cascades in C2H4 signalling. Nature , 451(7180): 789–795
doi: 10.1038/nature06543 pmid:18273012
61 Yu S W, Tang K X (2004). MAP kinase cascades responding to environmental stress in plants. Acta Bot Sin , 46(2): 127–136
62 Zhang A Y, Jiang M Y, Zhang J H, Tan M P, Hu X L (2006). Mitogen-activated protein kinase is involved in abscisic acid-induced antioxidant defense and acts downstream of reactive oxygen species production in leaves of maize plants. Plant Physiol , 141(2): 475–487
doi: 10.1104/pp.105.075416 pmid:16531486
63 Zhang S, Klessig D F (1998). The tobacco wounding-activated mitogen-activated protein kinase is encoded by SIPK. Proc Natl Acad Sci USA , 95(12): 7225–7230
doi: 10.1073/pnas.95.12.7225 pmid:9618567
64 Zong X J, Li D P, Gu L K, Li D Q, Liu L X, Hu X L (2009). Abscisic acid and hydrogen peroxide induce a novel maize group C MAP kinase gene, ZmMPK7, which is responsible for the removal of reactive oxygen species. Planta , 229(3): 485–495
doi: 10.1007/s00425-008-0848-4 pmid:19002491
[1] Jinxiang BAO, Shuhua ZHANG, Wenjing LU, Chengjin GUO, Juntao GU, Kai XIAO. Transcriptional responses and regulations to deficient phosphorus in plants[J]. Front Agric Chin, 2009, 3(1): 47-54.
[2] CAO Yunfei, WANG Jiaojiao, GUO Li, XIAO Kai. Identification, characterization and expression analysis of transcription factor () genes in rice ( L.)[J]. Front. Agric. China, 2008, 2(3): 253-261.
[3] GAI Junyi, LIU Ying, LV Huineng, XING Han, ZHAO Tuanjie, YU Deyue, CHEN Shouyi. Identification, inheritance and QTL mapping of root traits related to tolerance to rhizo-spheric stresses in soybean (G. max (L.) Merr.)[J]. Front. Agric. China, 2007, 1(2): 119-128.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed