Please wait a minute...
Frontiers of Agriculture in China

ISSN 1673-7334

ISSN 1673-744X(Online)

CN 11-5729/S

Front Agric Chin    2011, Vol. 5 Issue (2) : 152-161     DOI: 10.1007/s11703-011-1077-3
RESEARCH ARTICLE |
Identification of QTLs for biomass production in maize (Zea mays L.) under different phosphorus levels at two sites
Junyi CHEN1,2, Yilin CAI1(), Li XU1,2, Jiuguang WANG1, Wenlong ZHANG1, Guoqiang WANG1, Delin XU1, Tianqing CHEN1, Xuegao LU1, Haiyan SUN1, Aiying HUANG1, Ying LIANG1, Guoli DAI1, Hongni QIN1, Zuchun HUANG2, Zhaojing ZHU2, Zhiguo YANG2, Jun XU1, Shoufeng KUANG1
1. Key Laboratory of Biotechnology and Crop Quality Improvement, Ministry of Agriculture; Maize Institute of Southwest University, Chongqing 400716, China; 2. Chongqing Medical and Pharmaceutical College, Chongqing 401331, China
Download: PDF(642 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract  

The biomass production (BP), the leaf age (LA), and the plant height (PH) as well as the quantitative trait loci (QTLs) associated with these traits were determined for F2:3 population derived from the cross of two contrasting maize (Zea mays L.) genotypes: 082 and Ye107. By using composite interval mapping, a total of 12 and 12 distinct QTLs were identified at Kaixian and Southwest University under deficient phosphorus. Another 9 and 8 distinct QTLs were identified at two sites under normal phosphorus, respectively. Seven coincident QTLs for two traits (BP and LA) were detected in the interval bnlg1832-P2M8/j (bin 1.05) on Chromosome 1, and four consistent QTLs for one trait (PH) were coincident in the interval umc1102-P1M7/d (bin 3.05) on Chromosome 3. These coincident QTLs in two important genomic regions were identified under different phosphorus levels and two different environments. Therefore, the above two segments one (bnlg1832-P2M8/j) identified in Chromosome 1 and the other (umc1102-P1M7/d) identified in Chromosome 3 may be used in future for marker-assisted selection and high-resolution mapping leading to map-based cloning of QTLs for agronomically important traits under phosphorus deficiency.

Keywords maize      QTL analysis      biomass production      leaf age      plant height     
Corresponding Authors: CAI Yilin,Email:chenjunyi3@126.com   
Issue Date: 05 June 2011
URL:  
http://academic.hep.com.cn/fag/EN/10.1007/s11703-011-1077-3     OR     http://academic.hep.com.cn/fag/EN/Y2011/V5/I2/152
Fig.1  
Fig.2  
Fig.3  Linkage map of QTLs conferring BP, LA, and PH. Note: * and ** denote significant deviation at 5% and 1% level, respectively.
TraitsParentsF2∶3 families
082Ye107DifferenceMeanRangeσ^G2σ^E2hb2/%
at Kaixian
BP-KX8.545.523.027.644.68-10.961.420.3381.2
LA-KX4.83.31.53.722.1-5.81.140.3178.8
PH-KX30.417.213.226.2116.3-34.411.926.6264.3
at Southwest University
BP-SU8.586.232.357.545.72-10.460.640.1580.7
LA-SU4.73.31.44.392.3-5.80.710.2276.7
PH-SU37.224.512.733.8323.1-41.411.786.0466.1
Tab.1  Estimates of genetic variance and environment variance among 241 F families from the cross of 082 × Ye107
NamesCQPInterval markersClosest markersBinsLODR2 (%)TR2 (%)ADGADir
BP1a-KX177.1bnlg1832-P2M8/jbnlg18321.053.35920-0.50510.3348PDYe107
BP1b-KX195.5bnlg1023-bnlg1041bnlg10411.062.855200.4407-0.0291A082
BP1c-KX1112.5bnlg1025-bnlg1556bnlg10251.072.574180.37770.0298A082
BP1d-KX1132.9bnlg1044-bnlg1629bnlg16291.073.789180.5502-0.3035PD082
BP1e-KX1141.0mmc0041-umc1013umc10131.084.6712210.6536-0.3925PD082
BP1a-SU177.1bnlg1832-P2M8/jbnlg18321.053819-0.32690.197PDYe107
BP1b-SU1141.0mmc0041-umc1013umc10131.083.689180.3906-0.23PD082
BP7-SU757.2P3M8/a-bnlg1305P3M8/a7.032.617170.3106-0.1421PD082
LA1a-KX177.1bnlg1832-P2M8/jbnlg18321.052.6246-0.315-0.0517AYe107
LA1b-KX1158.2bnlg1597-bnlg1268abnlg15971.093.716120.3636-0.5732OD082
LA10-KX10173.3bnlg1839-P5M7/fP5M7/f10.0710.94070.02391.9504OD082
LA1a-SU187.5P3M3/a-P2M8/iP2M8/i1.053.07717-0.30930.0325AYe107
LA1b-SU1139.0mmc0041-umc1013mmc00411.082.542120.18830.107PD082
LA2-SU28.1umc1165b-umc1419umc1165b2.003.53819-0.34720.3016DYe107
LA4-SU4123.3P4M3/g-bnlg1337bnlg13374.102.813160.2104-0.3562OD082
LA7a-SU747.0P6M3/e-bnlg1070bnlg10707.032.583160.19820.2384OD082
LA7b-SU753.1bnlg1070-P3M8/aP3M8/a7.033.311140.14290.2287OD082
PH1-KX1128.6umc1245-umc1278umc12451.072.575191.1318-0.3201PD082
PH3a-KX3131.3umc1102-P1M7/dP1M7/d3.053.08923-1.41651.4513DYe107
PH3b-KX3139.6umc1158-P4M4/lP4M4/l3.053.88924-1.47581.3721DYe107
PH9-KX925.0umc1279-umc1033umc10409.013.74215-0.7027-0.8912ODYe107
PH3-SU3131.3umc1102-P1M7/dP1M7/d3.053.09822-1.34951.6192DYe107
PH8-SU862.4umc1268-P3M3/eumc12688.073.84718-1.26780.2641PDYe107
PH9-SU927.0umc1279-umc1033umc10409.014.24213-0.8089-1.0771ODYe107
Tab.2  QTLs detected for BP, LA, and PH with the F families from the cross of 082 × Ye107 under deficient phosphorus
NamesCQPInterval markersClosest markersBinsLODR2 (%)TR2 (%)ADGADir
BP1a-KX-NP177.1bnlg1832-P2M8/jbnlg18321.053.001521-0.43210.3067PDYe107
BP1a-SU-NP177.1bnlg1832-P2M8/jbnlg18321.053.10920-0.42080.234PDYe107
BP7a-KX-NP760.3umc1001-umc1015umc10017.032.758180.3106-0.1421PD082
LA1a-KX-NP177.1bnlg1832-P2M8/jbnlg18321.052.6689-0.435-0.1217AYe107
LA1b-KX-NP1143.5bnlg2228-umc1085umc10851.093.558150.3336-0.3453OD082
LA3a-KX-NP3155.4umc1027-umc1266umc10273.063.558120.01981.9664OD082
LA1a-SU-NP177.1bnlg1832-P2M8/jbnlg18321.053.15914-0.29850.1221AYe107
LA1b-SU-NP1143.5bnlg2228-umc1085umc10851.092.886100.48830.117PD082
LA1c-SU-NP1163.4umc1290a-umc1534umc15341.093.4596-0.34350.3005DYe107
LA6a-SU-NP663.3umc2055-umc2006umc20556.052.813160.2135-0.3542OD082
LA7a-SU-NP768.8umc1134-P6M3/dumc11347.052.683160.19820.2384OD082
PH1a-KX-NP1103.8umc1035-umc1122aumc10351.072.857181.0225-0.2201PD082
PH1a-SU-NP1172.5bnlg1055-bnlg131bnlg1311.103.25920-1.40081.4335DYe107
PH3a-KX-NP3131.3umc1102-P1M7/dP1M7/d3.053.50921-1.48551.3656DYe107
PH4a-KX-NP468.5umc1963-bnlg1159umc19634.053.54215-0.6232-0.8768ODYe107
PH3a-SU-NP3131.3umc1102-P1M7/dP1M7/d3.053.091020-1.44361.5563DYe107
PH6a-KX-NP652.4umc1918-umc2316umc23166.043.25718-1.18560. 2547PDYe107
Tab.3  QTLs detected for BP, LA, and PH with the F families from the cross of 082 × Ye107 under normal phosphorus
1 Chen J Y, Cai Y L, Xu L, Wang J G, Zhang W L, Liu Z Z, Peng K, Zhu Z J, Huang Z C, Ai J Z, Tang Q, Deng B H, Yang Z G, Luo J, Sun S L (2010). Identification of quantitative trait loci and epistasis for root characteristics and root exudations in maize (Zea mays L.) under deficient phosphorus. J Chongqing Univ: Eng Ed , 9(2): 105–116
2 Chen J Y, Xu L, Cai Y L, Xu J (2008). QTL mapping of phosphorus efficiency and relative biological characteristics in maize(Zea mays L.) at two sites. Plant Soil , 313(1-2): 251–266
3 Chen J, Xu L, Cai Y, Xu J (2009). Identification of QTLs for phosphorus utilization efficiency in maize (Zea mays L.) across P levels. Euphytica , 167(2): 245–252
doi: 10.1007/s10681-009-9883-x
4 Colomb B, Kiniry J R, Debaeke P (2000). Effects of soil phosphorus on field-grown maize (Zea mays L.) leaf development and senescence dynamics. Agron J , 92: 191–198
doi: 10.2134/agronj2000.923428x
5 El-Hamdi K H, Woodard H J (1995). Response of early corn growth to fertilizer phosphorus rates and placement methods. J Plant Nutr , 18(6): 1103–1120
doi: 10.1080/01904169509364966
6 Foyer C, Spencer C (1986). The relationship between phosphate status and photosynthesis in leaves. Effects on intracellular orthophosphate distribution, photosynthesis and assimilate partitioning. Planta , 167(3): 369–375
doi: 10.1007/BF00391341
7 Fredeen A L, Rao I M, Terry N (1989). Influence of phosphorus nutrition on growth and carbon partitioning in glycine max. Plant Physiol , 89(1): 225–230
doi: 10.1104/pp.89.1.225 pmid:16666518
8 Gavito M E, Miller M H (1998). Early phosphorus nutrition, Mycorrhizae development, dry matter partitioning and yield of maize. Plant Soil , 199(2): 177–186
doi: 10.1023/A:1004357322582
9 Kiniry J R, Jones C A, O’toole J C, Blanchet R, Cabelguenne M, Spanel D A (1989). Radiation-use efficiency in biomass accumulation prior to grain filling for five grain crop species. Field Crops Res , 20(1): 51–64
doi: 10.1016/0378-4290(89)90023-3
10 Lynch J, L?uchli A, Epstein E (1991). Vegetative growth of the common bean in response to phosphorus nutrition. Crop Sci , 31(2): 380–387
doi: 10.2135/cropsci1991.0011183 pmid:X003100020031x
11 Ni J J, Wu P, Senadhira D, Huang N (1998). Mapping of QTLs for phosphorus deficiency tolerance in rice (Oryza sativa L.). Theor Appl Genet , 97(8): 1361–1369
doi: 10.1007/s001220051030
12 Pellet D, El-Sharkawy M A (1993). Cassava varietal response to phosphorus fertilization. I. Yield, biomass and gas exchange. Field Crops Res , 35(1): 1–11
doi: 10.1016/0378-4290(93)90131-6
13 Plenet D, Etchebest S, Mollier A, Pellerin S(2000). Growth analysis of maize field crops under phosphorus deficiency I. Leaf Growth. Plant Soil , 223: 117–130
14 Plénet D, Mollier A, Pellerin S (2000). D. Plenet1, A. Mollier and S. Pellerin. Growth analysis of maize field crops under phosphorus deficiency. II. Radiation-use efficiency, biomass accumulation and yield components. Plant Soil , 224(2): 259–272
doi: 10.1023/A:1004835621371
15 Roberto T, Silvio S, Maria C S, Marco M, Silvia G, Pierangelo L (2003). Searching for quantitative trait loci controlling root traits in maize: a critical appraisal. Plant and Soil , 255(1): 35–54
16 Rodriguez D, Keltjens W G, Goudriaan J (1998a). Plant leaf area expansion and assimilate production in wheat (Triticum aestivum L.) growing under low phosphorus conditions. Plant Soil , 200(2): 227–240
doi: 10.1023/A:1004310217694
17 Rodriguez D, Pomar M C, Goudriaan J (1998b). Leaf primordial initiation, leaf emergence and tillering in wheat (Triticum aestivum L.) grown under low phosphorus conditions. Plant Soil , 202(1): 149–157
doi: 10.1023/A:1004352820444
18 Rodriguez D, Zubillaga M M, Ploschuk E L, Keltjens W G, Goudriaan J, Lavado R S (1998c)Leaf area expansion and assimilate production in sunflower (Helianthus annuus L.) growing under Low phosphorus conditions. Plant Soil , 202(1): 133–147
doi: 10.1023/A:1004348702697
19 Rogers S O, Rehner S, Bledsoe C, Mueller G J, Ammirati J F (1989). Exaction of DNA from Basidiomycetes for ribosomal DNA hybridization. Can J Bot , 67: 1235–1243
20 Silber A, Xu G, Levkovitch I, Soriano S, Bilu A, Wallach R (2003). High fertigation frequency: The effects on uptake of nutrients, water and plant growth. Plant Soil , 253(2): 467–477
doi: 10.1023/A:1024857814743
21 Steen I (1998). Phosphorus availability in the 21st century. Management of a non-renewable resources. Phosph. Potas. , 217: 25–31
22 Tadano T, Ozawa K, Sakai H, Osaki M, Matsui H (1993). Secretion of acid phosphatase by the roots of crop plants under phosphorus deficient conditions and some properties of the enzyme secreted by lupin roots. Plant Soil , 155/156(1): 95–98
doi: 10.1007/BF00024992
23 Tuberosa R, Parentoni S, Kim T S, Sanguineti M C, Phillips R L (1998). Mapping QTLs for ABA concentration in leaves of a maize cross segregating for anthesis date. Maize Genet Coop News Lett , 72: 72–73
24 Tuberosa R, Sanguineti M C, Landi P, Giuliani M M, Salvi S, Conti S (2002). Identification of QTLs for root characteristics in maize grown in hydroponics and analysis of their overlap with QTLs for grain yield in the field at two water regimes. Plant Mol Biol , 48(5-6): 697–712
doi: 10.1023/A:1014897607670 pmid:11999844
25 Whitehead D C, Dibb H, Hartley R D (1981). Extract pH and the release of phenolic compounds from soils, plant roots and leaf litter. Soil Biol Biochem , 13(5): 343–348
doi: 10.1016/0038-0717(81)90074-2
26 Yan X, Liao H, Beebe S E, Blair M W, Lynch J P (2004). QTL mapping of root hair and acid exudation traits and their relationship to phosphorus uptake in common bean. Plant Soil , 265(1-2): 17–29
doi: 10.1007/s11104-005-0693-1
27 Zhu J, Kaeppler S M, Lynch J P (2005). Mapping of QTL controlling root hair length in maize (Zea mays L.) under deficient phosphorus. Plant Soil , 270: 299–310
doi: 10.1007/s11104-004-1697-y
28 Zhu J, Lynch J P (2004). The contribution of lateral rooting to phosphorus acquisition efficiency in maize (Zea mays L.) seedlings. Funct Plant Biol , 31(10): 949–958
doi: 10.1071/FP04046
[1] Yizhi FENG, Bu TAO, Minhao PANG, Yingchao LIU, Jingao DONG. Occurrence of major mycotoxins in maize from Hebei Province, China[J]. Front Agric Chin, 2011, 5(4): 497-503.
[2] Junyi CHEN, Li XU. The candidate QTLs affecting phosphorus absorption efficiency and root weight in maize (Zea mays L.)[J]. Front Agric Chin, 2011, 5(4): 456-462.
[3] Junyi CHEN, Li XU. Comparative mapping of QTLs for H+ secretion of root in maize (Zea mays L.) and cross phosphorus levels on two growth stages[J]. Front Agric Chin, 2011, 5(3): 284-290.
[4] Ram Kailash P. YADAV, Katerina KARAMANOLI, Despoina VOKOU. Bacterial populations on the phyllosphere of Mediterranean plants: influence of leaf age and leaf surface[J]. Front Agric Chin, 2011, 5(1): 60-63.
[5] Kai WEI, Hao ZHANG, Xianfeng XU, Zuxin ZHANG, Hewei DU, Yiqin HUANG, . Evaluation of phenotype and genetic diversity of maize landraces from Hubei Province, Southwest China[J]. Front. Agric. China, 2009, 3(4): 374-382.
[6] Hongzhan Lü, Weili LIANG, Guiyan WANG, David J. CONNOR, Glyn M. RIMMINGTON. A simulation model assisted study on water and nitrogen dynamics and their effects on crop performance in the wheat-maize system: (II) model calibration, evaluation and simulated experimentation[J]. Front Agric Chin, 2009, 3(2): 109-121.
[7] Jie YU, Daiwen CHEN, Bing YU. Protective effects of selenium and vitamin E on rats consuming maize naturally contaminated with mycotoxins[J]. Front Agric Chin, 2009, 3(1): 95-99.
[8] Wenchao ZHEN, Shutong WANG, Chengyin ZHANG, Zhiying MA. Influence of maize straw amendment on soil-borne diseases of winter wheat[J]. Front Agric Chin, 2009, 3(1): 7-12.
[9] Wenying SUN, Yuxing ZHANG, Wenying SUN, Wenquan LE, Hai’e ZHANG. Construction of a genetic linkage map and QTL analysis for some leaf traits in pear (Pyrus L.)[J]. Front Agric Chin, 2009, 3(1): 67-74.
[10] ZHANG Weixing, ZHAO Zhi, BAI Guangxiao, FU Fangjing. Study and evaluation of drought resistance of different genotype maize inbred lines[J]. Front. Agric. China, 2008, 2(4): 428-434.
[11] LÜ Xiangling, LI Xinhai, XIE Chuanxiao, HAO Zhuanfang, JI Hailian, SHI Liyu, ZHANG Shihuang. Comparative QTL mapping of resistance to sugarcane mosaic virus in maize based on bioinformatics[J]. Front. Agric. China, 2008, 2(4): 365-371.
[12] GU Jian, LIU Kun, LI Shaoxiang, TIAN Yuxian, YANG Hexian, YANG Mujun. Study on the culture of cut plants in wheat haploid embryo induction by a wheat × maize cross[J]. Front. Agric. China, 2008, 2(4): 391-395.
[13] WANG Yijun, DENG Dexiang, BIAN Yunlong, XU Mingliang. Maize Mutator transposon[J]. Front. Agric. China, 2008, 2(4): 396-403.
[14] DU Xiong, BIAN Xiuju, YANG Fucun, ZHANG Lifeng, ZHANG Weihong. Effects of plastic-film mulching and nitrogen application on forage-oriented maize in the agriculture-animal husbandry ecotone in North China[J]. Front. Agric. China, 2008, 2(3): 266-273.
[15] BAI Yunfeng, YANG Hongchun, QU Lin, ZHENG Jun, ZHANG Jinpeng, WANG Maoyan, XIE Wan, ZHOU Xiaomei, WANG Guoying. Inverted-repeat transgenic maize plants resistant to sugarcane mosaic virus[J]. Front. Agric. China, 2008, 2(2): 125-130.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed