Please wait a minute...
Frontiers of Agriculture in China

ISSN 1673-7334

ISSN 1673-744X(Online)

CN 11-5729/S

Front Agric Chin    2011, Vol. 5 Issue (4) : 456-462     DOI: 10.1007/s11703-011-1079-1
RESEARCH ARTICLE |
The candidate QTLs affecting phosphorus absorption efficiency and root weight in maize (Zea mays L.)
Junyi CHEN(), Li XU
Institute of Medical Biotechnology in Chongqing, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China
Download: PDF(245 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract  

A maize F2 population was first used to construct a genetic linkage map of Chromosome 6 covering 117.6 cM with an average interval of 3.68 cM between adjacent markers. Based on composite interval mapping (CIM), the quantitative trait loci (QTL) for phosphorus absorption efficiency (PAE) and root-related traits was detected in four environments, i.e., Kaixian County under deficient phosphorus (KXDP), Kaixian County under normal phosphorus (KXNP), SUDP1, and SUDP2. QTLs affecting root weight (RW) were detected simultaneously at the dupssr15 locus region (bin 6.06) on Chromosome 6 in the four environments, while QTL affecting taproot length and fiber number was only detected in one or two environments. The result suggested that taproot length and fiber number were more easily affected by the environment than PAE and RW. The alleles originating from 082 increased PAE and RW on Chromosome 6. The QTL on bin 6.06 explained 4%–10% and 4%–8% of the total phenotypic variance of PAE and RW, respectively, and the estimates of the genetic effects presented dominance and overdominance. The QTL for RW in the dupssr15 locus is the minor QTLs environment interactive effects, which should be particularly useful in MAS manipulation of breeding maize.

Keywords maize      QTL analysis      candidate QTLs      phosphorus absorption efficiency      root-related traits      four environments     
Corresponding Authors: CHEN Junyi,Email:chenjunyi3@126.com   
Issue Date: 05 December 2011
URL:  
http://academic.hep.com.cn/fag/EN/10.1007/s11703-011-1079-1     OR     http://academic.hep.com.cn/fag/EN/Y2011/V5/I4/456
EnvironmentsTraitsParentsF2∶3 families
082Ye107DifferenceMeanRangeσ^G2σ^E2hb2(%)
KXNPPAE-KXNP4.322.112.21**3.061.35-4.880.6030.086187.5
RW-KXNP5.022.352.67**3.681.85-5.320.44380.120878.6
RL-KXNP20.5412.857.69*16.718.84-22.175.05521.240280.3
FN-KXNP25417579*201.64104-277811.9733241.169877.1
KXDPPAE-KXDP3.231.22.03**2.240.84-4.070.6470.06590.9
RW-KXDP4.121.852.27**3.281.67-4.670.32910.080280.4
RL-KXDP17.6510.127.53**15.268.00-20.654.60611.239278.8
FN-KXDP22112497*18596-25971823275.6
SUDP1PAE-SUDP13.41.262.14**2.290.86-4.150.6880.06291.8
RW-SUDP15.132.043.09**3.361.66-5.540.63580.141581.8
RL-SUDP118.2413.215.03*15.4610.68-20.833.50081.039877.1
FN-SUDP123415876*183122-25856820173.8
SUDP2PAE-SUDP24.482.252.23**3.541.80-5.040.38390.038990.8
RW-SUDP25.252.522.73**5.93.00-8.41.06650.271679.7
RL-SUDP232.1525.556.6*30.3519.78-42.3119.56346.144176.1
FN-SUDP2388286102**334.57220-4692084.7124665.567875.8
Tab.1  Estimates of genetic variance () and environment variance () among 241 F families from the cross of 082 × Ye107
TraitsSource of variationSSDegree of freedomF value
PAEGenotypes507.2224034.01**
Environments286.7731538.17**
Error44.74720
Total variation838.73963
RWGenotypes538.3924029.02**
Environments1112.0834795.05**
Error55.66720
Total variation1706.13963
RLGenotypes5528.362407.13**
Environments38532.9433976.32**
Error2325.74720
Total variation46387.04963
FNGenotypes853073.1024016.97**
Environments3820885.0036079.56**
Error150835.40720
Total variation4824794.00963
Tab.2  value of ANOVA for effects
TraitsPAERWRL
RW0.9539**
RL0.7936**0.8089**
FN0.8631**0.9088**0.9410**
Tab.3  Analysis of correlation among PAE, RW, RL, and FN
NameCQPInterval markersClosest markerBinsLODR2 (%)TR2 (%)ADGADir
PAE6-SUDP2698.3dupssr15- P1M7/adupssr156.063.16340.15420.0981PD082
PAE2-KXNP246.0umc1185- umc1555umc11852.032.56212-0.13560.3246ODYe107
PAE6-KXNP698.3dupssr15- P1M7/adupssr156.063.32490.21130.0982PD082
PAE9-KXNP986.6P1M3/d- P1M3/gP1M3/g9.042.562110.16030.2409OD082
PAE6-KXDP698.3dupssr15- P1M7/adupssr156.062.53390.19300.0850PD082
PAE9-KXDP986.6P1M3/d- P1M3/gP1M3/g9.042.51280.13600.2790OD082
RW6-SUDP2698.3dupssr15- P1M7/adupssr156.063.16340.25700.1635PD082
RW6-KXNP698.3dupssr15- P1M7/adupssr156.063.31340.17620.1042PD082
RW6-KXDP698.3dupssr15- P1M7/adupssr156.063.16340.14280.0908PD082
RW6-SUDP1698.3dupssr15- P1M7/adupssr156.062.55380.20700.0632PD082
RL2-KXDP2202.3umc2184-umc2077umc21842.092.507120.8525-0.4424PD082
RL5-KXDP5225.4umc2136-umc2308umc23085.082.51714-0.85620.1103AYe107
RL6-KXDP634.8bnlg2191-umc1572bnlg21916.022.523100.4887-0.9058OD082
RL8-KXDP829.7umc1034a-umc1172umc11728.042.60150.30770.4169OD082
RL6-KXNP634.8bnlg2191-umc1572bnlg21916.022.681110.3870-0.9502OD082
RL5-SUDP25189.6umc1680-bnlg1118bnlg11185.072.64310-1.19132.6496ODYe107
FN7-KXDP779.8P3M7/k-umc1029P3M7/k7.042.753105.91380.1840A082
FN5-SUDP15189.6umc1680-bnlg1118bnlg11185.072.75311-6.631314.3741ODYe107
FN6-KXNP698.3dupssr15- P1M7/adupssr156.063.15377.48924.2827PD082
Tab.4  Quantitative trait loci (QTLs) detected for PAE, RW, RL, and FN with the F families from the cross of 082 × Ye107
Fig.1  Linkage map of QTLs for PAE, RW, RL, and FN.
Fig.1  Linkage map of QTLs for PAE, RW, RL, and FN.
1 Chen J, Cai Y L, Xu L, Wang J G, Zhang W L, Wang G Q, Xu D L, Chen T Q, Lu X G, Sun H Y, Huang A Y, Liang Y, Dai G L, Qin H N, Huang Z C, Zhu Z J, Yang Z G, Xu J, Kuang S F (2011). Identification of QTLs for biomass production in maize (Zea mays L.) under different phosphorus levels at two sites. Front Agric China , 5(2): 152-161
2 Chen J, Xu L (2011). Comparative mapping of QTLs for H+ secretion of root in maize (Zea mays L.) and cross phosphorus levels on two growth stages. Front Agric China , 5(3): 284-289
3 Chen J, Xu L, Cai Y, Xu J (2008). QTL mapping of phosphorus efficiency and relative biologic characteristics in maize(Zea mays L.)at two sites.Plant Soil , 313 (1-2): 251-266
doi: 10.1007/s11104-008-9698-x
4 Chen J, Xu L, Cai Y, Xu J (2009). Identification of QTLs for phosphorus utilization efficiency in maize (Zea mays L.) across P levels. Euphytica , 167(2): 245-252
doi: 10.1007/s10681-009-9883-x
5 Guingo E, RHébert Y, Charcosset A (1998). Genetic analysis of root traits in maize. Agronomie, 18L: 225-235
6 Helentjaris T, Wright S, Weber D (1986). Construction of a genetic linkage map in maize using restriction fragment polymorphisms. Maize Genet Coop News Lett , 60: 118-120
7 Hinsinger P (2001). Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant Soil , 237(2): 173-195
doi: 10.1023/A:1013351617532
8 Hinsinger P, Gilkes R J (1996). Mobilization of phosphate from phosphate rock and alumina-sorbed phosphate by the roots of ryegrass and clover as related to rhizosphere pH. Eur J Soil Sci , 47(4): 533-544
doi: 10.1111/j.1365-2389.1996.tb01853.x
9 Kaeppler S M, Parke J L, Mueller S M, Senior L, Stuber C, Tracy W F (2000). Variation among maize inbred lines and detection of quantitative trait loci for growth at low phosphorus and responsiveness to arbuscular mycorrhizal fungi. Crop Sci , 40(2): 358-363
doi: 10.2135/cropsci2000.402358x
10 Kosambi D (1944). The estimation of map distances from recombination values. Ann Eugen , 12: 172-175
11 Stuber C W, Sisco P (1992). Marker-facilitated transfer of QTL alelles between elite inbred lines and responses in hybrids. Proc. 46th Annual Corn and Sorghum Research. Conference, Am. Seed Trade Assoc.,Washington, DC, USA . 104-113
12 Tuberosa R, Parentoni S, Kim T S, Sanguineti M C, Phillips R L (1998a). Mapping QTLs for ABA concentration in leaves of a maize cross segregating for anthesis date.Maize Genet Coop News Lett , 72: 72-73
13 Tuberosa R, Salvi S, Sanguineti M C, Maccaferri M, Giuliani S, Landi (2003). Searching for quantitative trait loci controlling root traits in maize: a critical appraisal.Plant and Soil , 255: 35-54
14 Tuberosa R, Sanguineti M C, Landi P, Giuliani M M, Salvi S, Conti S(2002). Identification of QTLs for root characteristics in maize grown in hydroponics and analysis of their overlap with QTLs for grain yield in the field at two water regimes.Plant Mol Biol , 47(5-6): 697-712
doi: 10.1023/A:1014897607670 pmid:11999844
15 Tuberosa R, Sanguineti M C, Landi P, Salvi S, Casarini E, Conti S (1998b). RFLP mapping of quantitative trait loci controlling abscisic acid concentration in leaves of drought-stressed maize (Zea mays L.).Theor Appl Genet , 97(5-6): 744-755
doi: 10.1007/s001220050951
16 Wu J X, Jenkins J N, McCarty J C, Zhong M, Swindle M (2007). AFLP marker associations with agronomic and fiber traits in cotton. Euphytica , 153(1-2): 153-163
17 Yan X, Liao H, Beebe S E, Blair M W, Lynch J P (2004). QTL mapping of root hair and acid exudation traits and their relationship to phosphorus uptake in common bean.Plant Soil , 265(1-2): 17-19
18 Zhu J, Kaeppler S M, Lynch J P (2005). Mapping of QTL controlling root hair length in maize (Zea mays L.) under deficient phosphorus.Plant Soil , 270: 299-310
doi: 10.1007/s11104-004-1697-y
19 Zhu J, Lynch J P (2004). The contribution of lateral rooting to phosphorus acquisition efficiency in maize (Zea mays L.) seedlings.Funct Plant Biol , 31(10): 949-958
doi: 10.1071/FP04046
20 Zuber M S (1996). Evaluation of corn root systems under various environments. Proc Annu Corn Sorghum Ind Res Conf , 23: 67-75
[1] Yizhi FENG, Bu TAO, Minhao PANG, Yingchao LIU, Jingao DONG. Occurrence of major mycotoxins in maize from Hebei Province, China[J]. Front Agric Chin, 2011, 5(4): 497-503.
[2] Junyi CHEN, Li XU. Comparative mapping of QTLs for H+ secretion of root in maize (Zea mays L.) and cross phosphorus levels on two growth stages[J]. Front Agric Chin, 2011, 5(3): 284-290.
[3] Junyi CHEN, Yilin CAI, Li XU, Jiuguang WANG, Wenlong ZHANG, Guoqiang WANG, Delin XU, Tianqing CHEN, Xuegao LU, Haiyan SUN, Aiying HUANG, Ying LIANG, Guoli DAI, Hongni QIN, Zuchun HUANG, Zhaojing ZHU, Zhiguo YANG, Jun XU, Shoufeng KUANG. Identification of QTLs for biomass production in maize (Zea mays L.) under different phosphorus levels at two sites[J]. Front Agric Chin, 2011, 5(2): 152-161.
[4] Kai WEI, Hao ZHANG, Xianfeng XU, Zuxin ZHANG, Hewei DU, Yiqin HUANG, . Evaluation of phenotype and genetic diversity of maize landraces from Hubei Province, Southwest China[J]. Front. Agric. China, 2009, 3(4): 374-382.
[5] Hongzhan Lü, Weili LIANG, Guiyan WANG, David J. CONNOR, Glyn M. RIMMINGTON. A simulation model assisted study on water and nitrogen dynamics and their effects on crop performance in the wheat-maize system: (II) model calibration, evaluation and simulated experimentation[J]. Front Agric Chin, 2009, 3(2): 109-121.
[6] Jie YU, Daiwen CHEN, Bing YU. Protective effects of selenium and vitamin E on rats consuming maize naturally contaminated with mycotoxins[J]. Front Agric Chin, 2009, 3(1): 95-99.
[7] Wenchao ZHEN, Shutong WANG, Chengyin ZHANG, Zhiying MA. Influence of maize straw amendment on soil-borne diseases of winter wheat[J]. Front Agric Chin, 2009, 3(1): 7-12.
[8] Wenying SUN, Yuxing ZHANG, Wenying SUN, Wenquan LE, Hai’e ZHANG. Construction of a genetic linkage map and QTL analysis for some leaf traits in pear (Pyrus L.)[J]. Front Agric Chin, 2009, 3(1): 67-74.
[9] ZHANG Weixing, ZHAO Zhi, BAI Guangxiao, FU Fangjing. Study and evaluation of drought resistance of different genotype maize inbred lines[J]. Front. Agric. China, 2008, 2(4): 428-434.
[10] LÜ Xiangling, LI Xinhai, XIE Chuanxiao, HAO Zhuanfang, JI Hailian, SHI Liyu, ZHANG Shihuang. Comparative QTL mapping of resistance to sugarcane mosaic virus in maize based on bioinformatics[J]. Front. Agric. China, 2008, 2(4): 365-371.
[11] GU Jian, LIU Kun, LI Shaoxiang, TIAN Yuxian, YANG Hexian, YANG Mujun. Study on the culture of cut plants in wheat haploid embryo induction by a wheat × maize cross[J]. Front. Agric. China, 2008, 2(4): 391-395.
[12] WANG Yijun, DENG Dexiang, BIAN Yunlong, XU Mingliang. Maize Mutator transposon[J]. Front. Agric. China, 2008, 2(4): 396-403.
[13] DU Xiong, BIAN Xiuju, YANG Fucun, ZHANG Lifeng, ZHANG Weihong. Effects of plastic-film mulching and nitrogen application on forage-oriented maize in the agriculture-animal husbandry ecotone in North China[J]. Front. Agric. China, 2008, 2(3): 266-273.
[14] BAI Yunfeng, YANG Hongchun, QU Lin, ZHENG Jun, ZHANG Jinpeng, WANG Maoyan, XIE Wan, ZHOU Xiaomei, WANG Guoying. Inverted-repeat transgenic maize plants resistant to sugarcane mosaic virus[J]. Front. Agric. China, 2008, 2(2): 125-130.
[15] SUN Qingquan, DONG Shuting, ZHANG Chunqing, ZHANG Ying, MA Dengchao. Establishment of transgenic acceptor and transformation of gene by particle gun in maize inbred line 18-599 (white)[J]. Front. Agric. China, 2008, 2(1): 37-43.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed