Please wait a minute...
Frontiers of Agriculture in China

ISSN 1673-7334

ISSN 1673-744X(Online)

CN 11-5729/S

Front Agric Chin    2011, Vol. 5 Issue (3) : 299-304     DOI: 10.1007/s11703-011-1085-3
Cloning and pharmaceutical analysis of CaMK gene of Botrytis cinerea
Yuxia DONG1, Jihong XING1, Jiao JIA1, Qiaoyun WENG2, Zhimin HAO1, Jingao DONG1()
1. Molecular Plant Pathology Lab, Agricultural University of Hebei, Baoding 071001, China; 2. Department of Agricultural and Forest Technology, Hebei North University, Zhangjiakou 075131, China
Download: PDF(412 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

Using a PCR homology approach, DNA and cDNA sequences of calcium/calmodulin-dependent protein kinase (CaMK) gene of Botrytis cinerea were obtained. Southern blotting result displayed that CaMK was single copy in the genome of B. cinerea. The cDNA sequence of CaMK revealed an open reading frame of 2190 nucleotides encoding a 730 amino acid protein with predicted molecular weight of 81.8748 kDa. The genomic sequence of CaMK revealed the same ORF interrupted by six introns. Bioinformatics analysis showed that this protein had the distinctive features that characterize CaMK ATP binding region signature and serine/threonine protein kinase active-site signature. Pharmaceutical analysis displayed that the CaMK specific inhibitor, KN-62, could inhibit conidial germination, pathogenicity and herbicidal activity of B. cinerea BC4 strain. It was suggested that CaMK played an important role in regulating conidial germination, pathogenicity and herbicidal activity of B. cinerea.

Keywords Botrytis cinerea      CaMK      pharmaceutical analysis      KN-62     
Corresponding Authors: DONG Jingao,   
Issue Date: 05 September 2011
URL:     OR
Fig.1  PCR amplification of full-length , cDNA and DNA of BC4. A is PCR amplification of cDNA. B is PCR amplification of DNA.
Fig.2  Conserved domain analysis of CaMK
Fig.3  Predicted secondary structure for CaMK protein from . Blue, red, green and purple represent alpha helix, extended strand, beta turn and random coil, respectively.
Fig.4  Southern Blotting of in the genome of . BC4.
Fig.5  The inhibition of KN-62 on the conidial germination of . . A—C represent concentrations of KN-62 at 60 μmol/L, 80 μmol/L and control, respectively.
Fig.6  The inhibition of KN-62 on the pathogenecity of . . A: . mycelia plugs without KN-62 treatment. B: . mycelia plugs with 80 μmol/L KN-62 treatment. C: Lesion areas were measured 3 d after inoculation. Values are averages from at least eight lesions. Asterisks indicate statistically significant differences between control and treatment, according to Student’s -test.
Fig.7  The herbicidal activity of the toxin of BC4 treated with various KN-62 concentrations. A-E are concentrations of KN-62 at 0 μmol/L, 20 μmol/L, 60 μmol/L, 80 μmol/L and control, respectively.
1 Anand T, Chandrasekaran A, Kuttalam S, Senthilraja G, Samiyappan R (2010). Integrated control of fruit rot and powdery mildew of chili using the biocontrol agent Pseudomonas fluorescens and a chemical fungicide. Biol Control , 52(1): 1–7
doi: 10.1016/j.biocontrol.2009.09.010
2 Chen H, Xiao X, Wang J, Wu L J, Zheng Z M, Yu Z L (2008). Antagonistic effects of volatiles generated by Bacillus subtilis on spore germination and hyphal growth of the plant pathogen, Botrytis cinerea. Biotechnol Lett , 30(5): 919–923
doi: 10.1007/s10529-007-9626-9 pmid:18165869
3 Drenth A, Goodwin S B, Fry W E, Davidse L C (1993). Genotypic diversity of Phytophthora infestans in the Netherlands revealed by DNA polymorphisms. Phytopathology , 83(10):1087–1092
4 Hanks S K, Quinn A M (1991). Protein kinase catalytic domain sequence database: identification of conserved features of primary structure and classification of family members. Methods Enzymol , 200: 38–62
doi: 10.1016/0076-6879(91)00126-H pmid:1956325
5 Jayashree T, Praveen Rao J, Subramanyam C (2000). Regulation of aflatoxin production by Ca2+/calmodulin-dependent protein phosphorylation and dephosphorylation. FEMS Microbiol Lett , 183(2): 215–219
doi: 10.1111/j.1574-6968.2000.tb08960.x pmid:10675586
6 Joseph J D, Means A R (2000). Identification and characterization of two Ca2+/CaM-dependent protein kinases required for normal nuclear division in Aspergillus nidulans. J Biol Chem , 275(49): 38230–38238
doi: 10.1074/jbc.M006422200 pmid:10988293
7 Joseph J D, Means A R (2002). Calcium binding is required for calmodulin function in Aspergillus nidulans. Eukaryot Cell , 1(1): 119–125
doi: 10.1128/EC.01.1.119-125.2002 pmid:12455978
8 Kameshita I, Yamada Y, Nishida T, Sugiyama Y, Sueyoshi N, Watanabe A, Asada Y (2007). Involvement of Ca2+/calmodulin-dependent protein kinases in mycelial growth of the basidiomycetous mushroom, Coprinus cinereus. Biochim Biophys Acta , 1770(9): 1395–1403
doi: 10.1016/j.bbagen.2007.05.008
9 Li C G (2003). Studies on herbicidal activity of metabolites from Botrytis cinerea and isolation of active substance. Dissertation for the Master Degree . Hebei: Agricultural University of Hebei (in Chinese)
10 Liu X H, Lu J P, Dong B, Gu Y, Lin F C (2010). Disruption of MoCMK1, encoding a putative calcium/calmodulin-dependent kinase, in Magnaporthe oryzae. Microbiol Res , 165(5): 402–410
doi: 10.1016/j.micres.2009.08.007 pmid:19837571
11 Ma J (2006). Mutation and differential display of herbicidal-related genes of Botrytis Cinerea. Dissertation for the Master Degree . Hebei: Agricultural University of Hebei (in Chinese)
12 Ma L, Liang S P, Jones R L, Lu Y T (2004). Characterization of a novel calcium/calmodulin-dependent protein kinase from tobacco. Plant Physiol , 135(3): 1280–1293
doi: 10.1104/pp.104.041970 pmid:15247371
13 Mukherjee P K, Kenerley C M (2010). Regulation of morphogenesis and biocontrol properties in Trichoderma virens by a VELVET protein, Vel1. Appl Environ Microbiol , 76(7): 2345–2352
14 Praskova M, Kalenderova S, Miteva L, Poumay Y, Mitev V (2002). Ca2+ /calmodulin-dependent protein kinase (CaM-kinase) inhibitor KN-62 suppresses the activity of mitogen-activated protein kinase (MAPK), c-myc activation and human keratinocyte proliferation. Arch Dermatol Res , 294(4): 198–202
doi: 10.1007/s00403-002-0312-4 pmid:12111351
15 Timmins J M, Ozcan L, Seimon T A, Li G, Malagelada C, Backs J, Backs T, Bassel-Duby R, Olson E N, Anderson M E, Tabas I (2009). Calcium/calmodulin-dependent protein kinase II links ER stress with Fas and mitochondrial apoptosis pathways. J Clin Invest , 119(10): 2925–2941
doi: 10.1172/JCI38857 pmid:19741297
16 Tokumitsu H, Chijiwa T, Hagiwara M, Mizutani A, Terasawa M, Hidaka H (1990). KN-62, 1-[N,O-bis(5-isoquinolinesulfonyl)-N-methyl-L-tyrosyl]-4-phenylpiperazine, a specific inhibitor of Ca2+ /calmodulin-dependent protein kinase II. J Biol Chem , 265(8): 4315–4320
17 Tsai P J, Tu J, Chen T H (2002). Cloning of a Ca2+??/calmodulin-dependent protein kinase gene from the filamentous fungus Arthrobotrys dactyloides. FEMS Microbiol Lett , 212(1): 7–13
doi: 10.1111/j.1574-6968.2002.tb11237.x pmid:12076780
18 Valle-Aviles L, Valentin-Berrios S, Gonzalez-Mendez R R, Rodriguez-Del Valle N (2007). Functional, genetic and bioinformatic characterization of a calcium/calmodulin kinase gene in Sporothrix schenckii. BMC Microbiol , 7(1): 107
doi: 10.1186/1471-2180-7-107 pmid:18047672
19 Yang Y, Cheng P, Zhi G, Liu Y (2001). Identification of a calcium/calmodulin-dependent protein kinase that phosphorylates the Neurospora circadian clock protein FREQUENCY. J Biol Chem , 276(44): 41064–41072
doi: 10.1074/jbc.M106905200 pmid:11551951
20 Zheng M, Xu K, Dong J G (2008). Purification and structural identification of herbicides from Botrytis cinerea. Acta Microbiologica Sinica , 48(10): 1362–1366 (in Chinese)
[1] Zhongbo XIA, Jihong XING, Xuan WANG, Bin ZHAO, Jianmin HAN, Jingao DONG. Screening of conidium development mutant of Botrytis cinerea and functional analysis of the related gene[J]. Front Agric Chin, 2011, 5(4): 479-485.
[2] Jihong XING, Qiaoyun WENG, Helong SI, Jianmin HAN, Jingao DONG. Identification and molecular tagging of two Arabidopsis resistance genes to Botrytis cinerea[J]. Front Agric Chin, 2011, 5(4): 430-436.
[3] Bin ZHAO, Meng ZHENG, Zhiying SUN, Zhiyong LI, Jihong XING, Jingao DONG. BcDR1, a putative gene, regulates the development and pathogenicity of Botrytis cinerea[J]. Front Agric Chin, 2011, 5(3): 338-343.
[4] Shutong WANG, Tongle HU, Yanling JIAO, Jianjian WEI, Keqiang CAO. Isolation and characterization of Bacillus subtilis EB-28, an endophytic bacterium strain displaying biocontrol activity against Botrytis cinerea Pers.[J]. Front Agric Chin, 2009, 3(3): 247-252.
Full text