Please wait a minute...
Frontiers of Agriculture in China

ISSN 1673-7334

ISSN 1673-744X(Online)

CN 11-5729/S

Front Agric Chin    2011, Vol. 5 Issue (3) : 268-273    https://doi.org/10.1007/s11703-011-1091-5
RESEARCH ARTICLE
Development of EST-SSR markers in peanut (Arachis hypogaea L.)
Xinyan WEI, Lifeng LIU(), Shunli CUI, Huanying CHEN, Jingjing ZHANG
Agricultural University of Hebei, Baoding 071001, China
 Download: PDF(91 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

More molecular markers for potential use in peanut genetic research were developed. A total of 92403 EST sequences of peanut (Arachis) in the NCBI database were downloaded and analyzed. 2594 SSRs distributed in 2267 non-redundant EST sequences were detected, with tri-nucleotide motif (65.54%) as the most abundant motif type followed by di-nucleotide motif (28.10%). Among the 92 repeat types, the top eight motif types were AG/TC (20.1%), AAG/TTC (11.8%), AAT/TTA (10.1%), AGG/TCC (6.6%), AGA/TCT (6.3%), AT/TA (5.9%), ACT/TGA (3.8%), and ATG/TAC (3.7%) with higher frequency. A total of 237 primer pairs were successfully designed based on the 2267 SSR-ESTs using DNA star software.

Keywords peanut      EST-SSR      development     
Corresponding Author(s): LIU Lifeng,Email:Liulifeng@hebau.edu.cn   
Issue Date: 05 September 2011
 Cite this article:   
Xinyan WEI,Lifeng LIU,Shunli CUI, et al. Development of EST-SSR markers in peanut (Arachis hypogaea L.)[J]. Front Agric Chin, 2011, 5(3): 268-273.
 URL:  
https://academic.hep.com.cn/fag/EN/10.1007/s11703-011-1091-5
https://academic.hep.com.cn/fag/EN/Y2011/V5/I3/268
Repeat typeSSR numberProportion in all SSRs (%)
Dinucleotide72928.10
Trinucleotide170065.54
Tetranucleotide1084.16
Pentanucleotide301.16
Hexanucleotide220.85
Octamer50.19
Total2594100
Tab.1  Occurrence of SSRs in non-redundant peanut ESTs
Repeat unitRepeat timeTotal
56789101112131415≥16
AC/TG221396211256
AG/TC147747734433025241651521
AT/TA533016126444122152
AAC/TTG64276573111115
AAG/TTC168633218682242305
AAT/TTA11041851026116262
ACA/TGT8332117
ACC/TGG38309131183
ACG/TGC2572135
ACT/TGA47291424298
AGA/TCT7144141493153164
AGC/TCG1911131
AGG/TCC106321973111170
ATA/TAT41121233211277
ATC/TAG501910521188
ATG/TAC48261521111196
CAC/GTG20974141
CAG/GTC2474237
CCG/GGC2072130
CGC/GCG246
CTC/GAG22202145
AAAC/TTTG22
AAAG/TTTC65141118
AAAT/TTTA14418
AACC/TTGG11
AAGA/TTCT781117
AATA/TTAT8210
AATC/TTAG11
AATG/TTAC11
AATT/TTAA112
ACAT/TGTA336
AGTT/TCAA11
ATAC/TATG314
ATAG/TATC33
ATCA/TAGT112
ATCC/TAGG11
ATTA/TAAT224
ATTC/TAAG11
CACT/GTGA314
CCGT/GGCA11
CCTT/GGAA33
GGGC/CCCG11
CTTC/GAAG11
GAGG/CTCC11
GCAT/CGTA11
TAAC/ATTG22
TATC/ATAG112
AAAAT/TTTTA22
AAAGA/TTTCT415
AAATA/TTTAT33
AACGC/TTGCG11
AAGAA/TTCTT22
AAGAG/CTCTT22
ACAAC/TGTTG11
ATATC/TATAG11
ATCAT/TAGTA11
CCTTC/GGAAG112
GAAAA/CTTTT22
GAATA/CTTAT11
GTGTG/CACAC11
TCTTC/AGAAG22
TTAAT/AATTA11
TTATC/AATAG11
TTATT/AATAA11
TTCCC/AAGGG11
AAAAAG/TTTTTC11
AACATG/TTGTAC11
AAGAGG/TTCTCC11
AGAAGG/TCTTCC11
ATCACA/TAGTGT11
ATCGTC/TAGCAG11
ATCTCT/TAGAGA11
CACCAG/GTGGTC11
CACCGC/GTGGCG11
CATCAC/GTAGTG11
CATGAG/GTACTC11
CGAAGA/GCTTCT11
CGTCAC/GCAGTA11
CTTTCC/GAAAGG11
GAAGAT/CGGCTA11
GAGAAG/CTCTTC11
GTGGCG/CACCGC11
TCCAGC/AGGTCG11
TCTCTT/AGAGAA11
TCTGGT/AGACCA11
TCTTCA/AGAAGT11
TTACTA/AATGAT11
GAGTAGT/ATCATCA11
TAATCAA/ATTAGTT11
TCACCAG/AGTGGTC11
TCTTCTT/AGAAGAA1
TTAGAAC/AATCTTG11
Total995428461202144835847413218852594
Tab.2  Occurrence of different SSR of peanut
1 Cardle L, Ramsay L, Milbourne D, Macaulay M, Marshall D, Waugh R (2000). Computational and experimental characterization of physically clustered simple sequence repeats in plants. Genetics , 156(2): 847–854
pmid:11014830
2 Decroocq V, Favé M G, Hagen L, Bordenave L, Decroocq S (2003). Development and transferability of apricot and grape EST microsatellite markers across taxa. Theor Appl Genet , 106(5): 912–922
pmid:12647067
3 Gao L F, Tang J F, Li H W, Jia J Z (2003). Analysis of microsatellites in major crops assessed by computational and experimental approaches. Molecular Breeding , 12(3): 245–261
doi: 10.1023/A:1026346121217
4 Gimenes M A, Hoshino A A, Barbosa A V, Palmieri D A, Lopes C R (2007). Characterization and transferability of microsatellite markers of the cultivated peanut (Arachis hypogaea). BMC Plant Biol , 7: 9–21
doi: 10.1186/1471-2229-7-9 pmid:17326826
5 Gupta P K, Rustgi S, Sharma S, Singh R, Kumar N, Balyan H S (2003). Transferable EST-SSR markers for the study of polymorphism and genetic diversity in bread wheat. Mol Genet Genomics , 270(4): 315–323
doi: 10.1007/s00438-003-0921-4 pmid:14508680
6 Han Z Q, Gao G Q, Wei P X, Tang R H, Zhong R C (2004). Analysis of DNA polymorphism and genetic relationships in cultivated peanut (Arachis hypogaea L.) using microsatellite markers. Acta Agron Sin , 11: 1097–1101 (in Chinese)
7 He G, Meng R, Newman M, Gao G, Pittman R N, Prakash C S (2003). Microsatellites as DNA markers in cultivated peanut (Arachis hypogaea L.). BMC Plant Biol , 3: 3–8
doi: 10.1186/1471-2229-3-3 pmid:12517306
8 Hong Y B, Chen X P, Liang X Q, Liu H Y, Zhou G Y, Li S X, Wen S J, Holbrook C C, Guo B Z (2010). A SSR-based composite genetic linkage map for the cultivated peanut (Arachis hypogaea L.) genome. BMC Plant Biol , 10: 17–39
doi: 10.1186/1471-2229-10-17 pmid:20105299
9 Hong Y B, Liang X Q, Chen X P, Lin K Y, Zhou G Y, Li S X, Liu H Y (2008). Genetic differences in peanut cultivated types (Arachis hypogaea) revealed by SSR polymorphism. Mol Plant Breed , 6(1): 71–78 (in Chinese)
10 Hopkins M S, Casa A M, Wang T, Mitchell S E, Dean R E, Kochert G D, Kresovich S (1999). Discovery and characterization of polymorphic simple sequence repeat (SSRs) in peanut. Crop Science , 39(4): 1243–1248
doi: 10.2135/cropsci1999.0011183X003900040047x
11 Kantety R V, La Rota M, Matthews D E, Sorrells M E (2002). Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat. Plant Mol Biol , 48(5/6): 501–510
doi: 10.1023/A:1014875206165 pmid:11999831
12 Li Y Q, Li H W, Gao Li F, He B R (2004). Prograss of simple sequence repeats derived from expressed sequence tags. Journal of Plant Genetic Resources , 5: 91–95 (in Chinese)
13 Liang X Q, Chen X P, Hong Y B, Liu H, Zhou G Y, Li S X, Guo B Z (2009). Utility of EST-derived SSR in cultivated peanut (Arachis hypogaea L.) and Arachis wild species. BMC Plant Biol , 9: 35–43
doi: 10.1186/1471-2229-9-35 pmid:19309524
14 Moretzsohn M C, Hopkins M S, Mitchell S E, Kresovich S, Valls J F, Ferreira M E (2004). Genetic diversity of peanut (Arachis hypogaea L.) and its wild relatives based on the analysis of hypervariable regions of the genome. BMC Plant Biol , 4: 11–20
doi: 10.1186/1471-2229-4-11 pmid:15253775
15 Moretzsohn M C, Leoi L, Proite K, Guimar?es P M, Leal-Bertioli S C, Gimenes M A, Martins W S, Valls J F, Grattapaglia D, Bertioli D J (2005). A microsatellite-based, gene-rich linkage map for the AA genome of Arachis (Fabaceae). Theor Appl Genet , 111(6): 1060–1071
doi: 10.1007/s00122-005-0028-x pmid:16088397
16 Powell W, Machray G C, Provan J (1996). Polymorphism revealed by simple sequence repeats. Trends in Plant Science , l: 215–222
17 Proite K, Leal-Bertioli S C, Bertioli D J, Moretzsohn M C, da Silva F R, Martins N F, Guimar?esP M (2007). ESTs from a wild Arachis species for gene discovery and marker development. BMC Plant Biol , 7: 7–16
doi: 10.1186/1471-2229-7-7 pmid:17302987
18 Raina S N, Rani V, Kojima T, Ogihara Y, Singh K P, Devarumath R M (2001). RAPD and ISSR fingerprints as useful genetic markers for analysis of genetic diversity, varietal identification, and phylogenetic relationships in peanut (Arachis hypogaea) cultivars and wild species. Genome , 44(5): 763–772
doi: 10.1139/gen-44-5-763 pmid:11681599
19 Shangguan L F, Li X Y, Song C N, Wang X C, Wang Y Z, Zhang Z, Fang J G (2010). Development of EST-SSR markers in Prunusmume and its application. Acta Botanica Boreali-Occidentalia Sinica , 30(9): 1766–1772 (in Chinese)
20 Song Q J, Marek L F, Shoemaker R C, Lark K G, Concibido V C, Delannay X, Specht J E, Cregan P B (2004). A new integrated genetic linkage map of the soybean. Theor Appl Genet , 109(1): 122–128
doi: 10.1007/s00122-004-1602-3 pmid:14991109
21 Tang R H, Gao G Q, He L Q, Han Zh Q, Shan Sh H, Zhong R Ch, Zhou C Q, Jiang J, Li Y R, Zhuang W J (2007). Genetic diversity in cultivated groundnut based on SSR markers. Journal of Genetics and Genomics , 34(5): 449–459
doi: 10.1016/S1673-8527(07)60049-6 pmid:17560531
22 Tang R H, Zhuang W J, Gao G Q, Han Zh Q, Zhong R Ch, He L Q, Zhou C Q (2004). Simple sequence repeats polymorphism among accessions of var.vulgaris Harz in Arachis hypogaea L.. Chinese Journal of Oil Crop Sciencs , 26(2): 21–26 (in Chinese)
23 Varshney R K, Bertioli D J, Moretzsohn M C, Vadez V, Krishnamurthy L, Aruna R, Nigam S N, Moss B J, Seetha K, Ravi K, He G, Knapp S J, Hoisington D A (2009). The first SSR-based genetic linkage map for cultivated groundnut (Arachis hypogaea L.). Theor Appl Genet , 118(4): 729–739
doi: 10.1007/s00122-008-0933-x pmid:19048225
24 Varshney R K, Graner A, Sorrells M E (2005). Genic microsatellite markers in plants: features and applications.Trends Biotechnol , 23(1): 48–55
doi: 10.1016/j.tibtech.2004.11.005 pmid:15629858
[1] Zhongbo XIA, Jihong XING, Xuan WANG, Bin ZHAO, Jianmin HAN, Jingao DONG. Screening of conidium development mutant of Botrytis cinerea and functional analysis of the related gene[J]. Front Agric Chin, 2011, 5(4): 479-485.
[2] Lihong WEI, Qiuxi ZHAI, . The dynamics and correlation between nitrogen, phosphorus, potassium and calcium in a hazelnut fruit during its development[J]. Front. Agric. China, 2010, 4(3): 352-357.
[3] Jiaqing WANG, Lin HOU, . Unigene derived SSR analysis for the Fugu rubripes and insights into the characteristics of EST-SSR distribution in tissues/organs[J]. Front. Agric. China, 2010, 4(1): 121-127.
[4] Jiancheng ZHANG, Chuantang WANG, Yueyi TANG, Xiuzhen WANG. Effects of grading on the main quality attributes of peanut kernels[J]. Front Agric Chin, 2009, 3(3): 291-293.
[5] Baoguo LI, Suping GUO, Guohui QI. The main factors causing “imperfect shell development” (ISD) in thin-shelled walnut[J]. Front Agric Chin, 2009, 3(1): 75-77.
[6] LI Juan, ZHOU Jianmin. Effect of interactions between carbon dioxide enrichment and NH/NO ratio on pH of culturing nutrient solution, growth and vigor of tomato root system[J]. Front. Agric. China, 2008, 2(3): 296-300.
[7] LIU Diqiu, ZHANG Xianlong. Gene cloning: exploring cotton functional genomics and genetic improvement[J]. Front. Agric. China, 2008, 2(1): 1-9.
[8] YI Zhenxie, WANG Pu, TAO Hongbin, ZHANG Hongfang, SHEN Lixia. Effects of types and application rates of nitrogen fertilizer on the development and nitrogen utilization of summer maize[J]. Front. Agric. China, 2008, 2(1): 44-49.
[9] YANG Jianchang, DU Yong, WU Changfu, LIU Lijun, WANG Zhiqin, ZHU Qingsen. Growth and development characteristics of super-high-yielding mid-season japonica rice[J]. Front. Agric. China, 2007, 1(2): 166-174.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed