Please wait a minute...
Frontiers of Agriculture in China

ISSN 1673-7334

ISSN 1673-744X(Online)

CN 11-5729/S

Front Agric Chin    2011, Vol. 5 Issue (3) : 366-371     DOI: 10.1007/s11703-011-1095-1
Molecular cloning and sequence analysis of an LFY homologous gene from Juglans regia L.
Fuqiang HE, Hongxia WANG, Zhihua ZHANG()
Mountainous Areas Research Institute, Agricultural University of Hebei, Baoding 071001, China
Download: PDF(580 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

The existence of a long juvenile phase is found seriously to affect the early-stage economic benefits of later mature walnuts (Juglans regia L.). Studies on LFY, a key gene controlling floral transition and flower differentiation, may be helpful in solving the problem. This study reports the identification and characterization of a JrLFY gene from Juglans regia L., a homolog of FLORICAULA/LFY. The gene was isolated from flower buds of precocious walnut cultivar Zhonglin No. 5 by RT-PCR and RACE. The cDNA sequence of JrLFY (GenBank accession no. GU194836) was 1496 bp and contained an ORF of 1158 bp. Its corresponding genomic sequence (GenBank accession no. HQ019159) showed that the JrLFY contained three exons and two introns. The predicted amino acid sequence of the gene consisted of 385 amino acids and had a conserved region in the C-terminal when being aligned with sequences of other LFY homologs. Phylogenetic analysis showed that the LFY protein of walnut was close to those of hickory and chestnut. These studies will lay a foundation for understanding the mechanism of early fruiting and preparation for transfer of the JrLFY as a transgene to later mature walnuts.

Keywords walnut      JrLFY      early mature      precocious      juvenility     
Corresponding Authors: ZHANG Zhihua,   
Issue Date: 05 September 2011
URL:     OR
Fig.1  Schematic representation of gene. a stands for schematic diagram of the JrLFY cDNA ORF (black box) with 3'UTR (thin lines); b stands for exon–intron organization of the gene with location of exons (black boxes) and introns (thin lines). The number 1 indicates the location of the translational start codon as determined. Numbers delineate addresses in nucleic acid sequences.
OrganismAccession numberNumber of intronsLength (bp)Number of exonsLength (bp)Number of amino acid residues
Juglans regiaHQ0191592545, 1,1663433, 362, 363385
Arabidopsis thalianaAF4667922458, 9073457, 407, 411424
Solanum tuberosumEU3710472600, 5723477, 407, 378418
Solanum lycopersicumAF1979362309, 4093475, 389, 375412
Capsicum annuumEU0002542712, 2,0203457, 413, 381416
ChrysanthemumlavandulifoliumAY6725422583, 1,0833463, 386, 390412
Boechera strictaAY7345642453, 1,1753430, 404, 355396
Orchis italicaAB08885121,070, 1203486, 444, 412453
Vitis viniferaAF3781262153, 6633451, 377, 381402
Citrus sinensisAY3389762408, 6753463, 353, 381398
Idahoa scapigeraAY2192292556, 1,0703445, 389, 333389
Titanotrichum oldhamiiAY5263192421, 873433, 377, 369392
Serapias linguaAB0884662100, 1003492, 438, 438455
Cedrela fissilisAY6336212176, 6553450, 378, 363396
Arabidopsis lyrataAF4668023441, 76, 8764457, 35, 390, 411430
Solanum tuberosumEF0623572600, 5723477, 407, 373418
Tab.1  Organization of introns and exons in genomic sequence from different plants
Fig.2  Alignment of amino acid sequence of LFY (JrLFY, ACZ48701) with those of LFY (CcLFY, ABI58284), LFY (AMAFLO, AAA62574), FL2 (NtFL2, Q40505) and LFY (AtLFY, NM_125579). Identical amino acid residues in this alignment are shaded in black, and similar amino acid residues are shaded in red (higher similarity) and blue (lower similarity). The alignment was performed with the DNAMAN program.
Fig.3  Phylogenetic analysis of the 29 LFY proteins. Individual data are derived from GenBank except for provided by this research. The tree was displayed as a phylogram in which branch lengths are proportional to distance.
1 An X M, Wang D M, Wang Z L, Li B, Bo W H, Cao G L, Zhang Z Y (2011). Isolation of a LEAFY homolog from Populus tomentosa: expression of PtLFY in P. tomentosa floral buds and PtLFY-IR-mediated gene silencing in tobacco (Nicotiana tabacum). Plant Cell Rep , 30(1): 89-100
2 Baum D A, Yoon H S, Oldham R L (2005). Molecular evolution of the transcription factor LEAFY in Brassicaceae. Mol Phylogenet Evol , 37(1): 1-14
doi: 10.1016/j.ympev.2005.07.002 pmid:16112883
3 B?urle I, Dean C (2006). The timing of developmental transitions in plants. Cell , 125(4): 655-664
doi: 10.1016/j.cell.2006.05.005 pmid:16713560
4 Benlloch R, Berbel A, Serrano-Mislata A, Madue?o F (2007). Floral initiation and inflorescence architecture: a comparative view. Ann Bot (Lond) , 100(3): 659-676
doi: 10.1093/aob/mcm146 pmid:17679690
5 Blázquez M A, Ferrándiz C, Madueáo F, Parcy F (2006). How floral meristems are built. Plant Mol Biol , 60(6): 855-870
doi: 10.1007/s11103-006-0013-z pmid:16724257
6 Bowman J L, Alvarez J, Weigel D, Meyerowitz E M, Smyth D R (1993). Control of flower development in Arabidopsis thaliana by APETALA1 and interacting genes. Development , 119: 721-743
7 Breton C, Cornu D, Chriqui D, Sauvanet A, Capelli P, Germain E, Jay-Allemand C (2004). Somatic embryogenesis, micropropagation and plant regeneration of “Early Mature” walnut trees (Juglans regia) that flower in vitro. Tree Physiol , 24(4): 425-435
8 Brunner A M, Rottmann W H, Sheppard L A, Krutovskii K, DiFazio S P, Leonardi S, Strauss S H (2000). Structure and expression of duplicate AGAMOUS orthologues in poplar. Plant Mol Biol , 44(5): 619-634
doi: 10.1023/A:1026550205851 pmid:11198423
9 Carmona M J, Cubas P, Martínez-Zapater J M (2002). VFL, the grapevine FLORICAULA/LEAFY ortholog, is expressed in meristematic regions independently of their fate. Plant Physiol , 130(1): 68-77
doi: 10.1104/pp.002428 pmid:12226487
10 Guo J L, Yang Q (2008). Molecular Cloning and expression analysis of a LFY homologous gene from potato. Plant Mol Biol Rep , 26(4): 324-334
doi: 10.1007/s11105-008-0045-4
11 Hempel F D, Weigel D, Mandel M A, Ditta G, Zambryski P C, Feldman L J, Yanofsky M F (1997). Floral determination and expression of floral regulatory genes in Arabidopsis. Development , 124(19): 3845-3853
12 Kim D H, Han M S, Cho H W, Kim D S, Kim H J, Kim B D (2008). Molecular cloning of the CaLFY, putative pepper ortholog of FLO/LFY. Mol Breeding , 22(3): 443-453
doi: 10.1007/s11032-008-9188-0
13 Kobayashi Y, Weigel D (2007). Move on up, it’s time for change—mobile signals controlling photoperiod-dependent flowering. Genes Dev , 21(19): 2371-2384
doi: 10.1101/gad.1589007 pmid:17908925
14 Mandel M A, Gustafson-Brown C, Savidge B, Yanofsky M F (1992). Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature , 360(6401): 273-277
doi: 10.1038/360273a0 pmid:1359429
15 Mandel M A, Yanofsky M F (1995). A gene triggering flower in Arabidopsis. Nature , 377: 522-524
doi: 10.1038/377522a0 pmid:7566148
16 Montieri S, Gaudio L, Aceto S (2004). Isolation of the LFY/FLO homologue in Orchis italica and evolutionary analysis in some European orchids. Gene , 333: 101-109
doi: 10.1016/j.gene.2004.02.015 pmid:15177685
17 Parcy F, Nilsson O, Busch M A, Lee I, Weigel D (1998). A genetic framework for floral patterning. Nature , 395(6702): 561-566
doi: 10.1038/26903 pmid:9783581
18 Pe?a L, Martín-Trillo M, Juárez J, Pina J A, Navarro L, Martínez-Zapater J M (2001). Constitutive expression of Arabidopsis LEAFY or APETALA1 genes in citrus reduces their generation time. Nat Biotechnol , 19(3): 263-267
doi: 10.1038/85719 pmid:11231561
19 Prusinkiewicz P, Erasmus Y, Lane B, Harder L D, Coen E (2007). Evolution and development of inflorescence architectures. Science , 316(5830): 1452-1456
doi: 10.1126/science.1140429 pmid:17525303
20 Rotem N, Shemesh E, Peretz Y, Akad F, Edelbaum O, Rabinowitch H D, Sela I, Kamenetsky R (2007). Reproductive development and phenotypic differences in garlic are associated with expression and splicing of LEAFY homologue gaLFY. J Exp Bot , 58(5): 1133-1141
doi: 10.1093/jxb/erl272 pmid:17237158
21 Sheppard L A, Brunner A M, Krutovskii K V, Rottmann W H, Skinner J S, Vollmer S S, Strauss S H (2000). A DEFICIENS homolog from the dioecious tree black cottonwood is expressed in female and male floral meristems of the two-whorled, unisexual flowers. Plant Physiol , 124(2): 627-640
doi: 10.1104/pp.124.2.627 pmid:11027713
22 Tandre K, Albert V A, Sund?s A, Engstr?m P (1995). Conifer homologues to genes that control floral development in angiosperms. Plant Mol Biol , 27(1): 69-78 7865797
doi: 10.1007/BF00019179
23 Wagner D, Sablowski R W M, Meyerowitz E M (1999). Transcriptional activation of APETALA1 by LEAFY. Science , 285(5427): 582-584
doi: 10.1126/science.285.5427.582 pmid:10417387
24 Weigel D, Alvarez J, Smyth D R, Yanofsky M F, Meyerowitz E M (1992). LEAFY controls floral meristem identity in Arabidopsis. Cell , 69(5): 843-859
doi: 10.1016/0092-8674(92)90295-N pmid:1350515
25 Weigel D, Nilsson O (1995). A developmental switch sufficient for flower initiation in diverse plants. Nature , 377(6549): 495-500
doi: 10.1038/377495a0 pmid:7566146
26 William D A, Su Y, Smith M R, Lu M, Baldwin D A, Wagner D (2004). Genomic identification of direct target of LEAFY. Proc Natl Acad Sci USA , 101(6): 1775-1780
doi: 10.1073/pnas.0307842100 pmid:14736918
[1] Baoguo LI, Suping GUO, Guohui QI. The main factors causing “imperfect shell development” (ISD) in thin-shelled walnut[J]. Front Agric Chin, 2009, 3(1): 75-77.
Full text