Please wait a minute...
Frontiers of Agriculture in China

ISSN 1673-7334

ISSN 1673-744X(Online)

CN 11-5729/S

Front Agric Chin    0, Vol. Issue () : 413-422    https://doi.org/10.1007/s11703-011-1133-z
RESEARCH ARTICLE
Expression pattern of wheat miRNAs under salinity stress and prediction of salt-inducible miRNAs targets
Wenjing LU2, Jincai LI3, Fangpeng LIU2, Juntao GU2, Chengjin GUO1, Liu XU2, Huiyan ZHANG2, Kai XIAO1()
1. College of Agronomy, Agricultural University of Hebei, Baoding 071001, China; 2. College of Life Sciences, Agricultural University of Hebei, Baoding 071001, China; 3. Science and Technology Management Office, Agricultural University of Hebei, Baoding 071001, China
 Download: PDF(356 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

MicroRNAs (miRNAs) are non-coding small RNAs that regulate gene expression by translational repression or transcript degradation. Thus far, a large number of miRNAs have been identified from model plant species and the quantity of miRNAs has been functionally characterized in diverse plants. However, the molecular characterizations of the conserved miRNAs are still largely elusive in wheat. In this study, 32 wheat miRNAs (TaMIRs) currently released in the Sanger miRBase (the microRNA database) were selected to evaluate the expression patterns under conditions of non-stress (CK) and salt stress treatment. Based on the analysis of semiquantitative RT-PCR and quantitative real qRT-PCR, TaMIR159a, TaMIR160, TaMIR167, TaMIR174, TaMIR399, TaMIR408, TaMIR11124 and TaMIR1133 were found to have responses to salinity stress, with an upregulated pattern under salt stress treatment. Based on a BLAST search against the NCBI GenBank database, the potential targets of the salt-inducible wheat miRNAs were predicted. Except for TaMIR399 not being identified to have the putative target genes, other salt-inducible TaMIRs were found to possess 2 to 7 putative target genes. Together, our results suggest that a subset of miRNAs are involved in the mediation of salt stress signaling responses in wheat via their roles on the regulation of acted target genes at post-transcriptional and translation levels.

Keywords wheat (Triticum aestivum L.)      microRNA      expression      target gene      salinity stress     
Corresponding Author(s): XIAO Kai,Email:xiaokai@hebau.edu.cn   
Issue Date: 05 December 2011
 Cite this article:   
Wenjing LU,Jincai LI,Fangpeng LIU, et al. Expression pattern of wheat miRNAs under salinity stress and prediction of salt-inducible miRNAs targets[J]. Front Agric Chin, 0, (): 413-422.
 URL:  
https://academic.hep.com.cn/fag/EN/10.1007/s11703-011-1133-z
https://academic.hep.com.cn/fag/EN/Y0/V/I/413
Name of TaMIRAccession numberPre-MIR length (nt)Mature sequence (nt)
TaMIR159aMI0006170177154-uuuggauugaagggagcucug-174 (21)
TaMIR159bMI0006171255230-uuuggauugaagggagcucug-250 (21)
TaMIR160MI000617214822-ugccuggcucccuguaugcca-42 (21)
TaMIR164MI00061731563- uggagaagcagggcacgugca-23 (21)
TaMIR167MI000617410818-ugaagcugccagcaugaucua-38 (21)
TaMIR174MI000617513089-ugauugagccgugccaauauc-109 (21)
TaMIR399MI0006176126108-ugccaaaggagaauugccc-126 (19)
TaMIR408MI0006177187136-cugcacugccucuucccuggc – 156 (21)
TaMIR444MI0006178426153- uugcugccucaagcuugcugc-173 (21)
TaMIR1117MI000617911819-uaguaccgguucguggcacgaacc-42 (24)
TaMIR1118MI000618014022-cacuacauuauggaauggaggga-44 (23)
TaMIR1119MI000618117684-uggcacggcgugaugcugagucag-107 (24)
TaMIR1120MI000618211970-acauucuuauauuaugagacggag-93 (24)
TaMIR1121MI00061839851-aguagugaucuaaacgcucuua-72 (22)
TaMIR1122MI000618429596-uagauacauccguaucuaga-115 (20)
TaMIR1123MI0006185218188-uccgugagaccuggucucauaga-210 (23)
TaMIR1124MI000618612983-gcaggacgugaagagcgagucc-104 (22)
TaMIR1125MI000618714116-aaccaacgagaccaacugcggcgg-39 (24)
TaMIR1126MI000618816440-uccacuauggacuacauacggag-62 (19)
TaMIR1127MI000618915022-uccuuccguucggaauuac-40 (19)
TaMIR1128MI000619019031-uacuacucccuccguccgaaa-51 (21)
TaMIR1129MI000619128025-cagcgagccagcggagaccggcag-48 (24)
TaMIR1130MI000619212216-ccuccgucucguaauguaagacg-38 (24)
TaMIR1131MI00061931004-uaguaccgguucguggcuaacc-25 (22)
TaMIR1132MI0006194154134-cauuauggaacggaaggag-152 (19)
TaMIR1133MI000619518029-cauauacucccuccguccgaaa-50 (22)
TaMIR1134MI0006196180124-caacaacaacaagaagaagaagau-147 (24)
TaMIR1135MI000619710978-cugcgacaaguaauuccgaacgga-101 (24)
TaMIR1136MI000619810723-uugucgcagguauggauguaucua-46 (24)
TaMIR1137MI000619914873-uaguacaaaguugagucauc-92 (20)
TaMIR1138MI0006200194140-gcuuagaugugacauccuuaaaa-162 (23)
TaMIR1139MI000620121611-agaguaacauacacuaguaaca-32 (22)
Tab.1  The molecular characterization of wheat TaMIRs
Name of TaMIRForward primerReverse primerLength of product (bp)
TaMIR159a5′-GGTTCCCACTATCCTATC CC A5′-TGCAGAGCTCCCTTCAATCCA112
TaMIR159b5′-AAAAAGGGGTGTTGCTGTG5′-ATGCAGAGCTCCCTTCAATCC238
TaMIR1605′-GATATGCCTGGCTCCCTGTATG5′-AGACGGTCATGCTTGGCTCCTC103
TaMIR1645′-GGTGGAGAAGCAGGGCACGT5′-GGTGGAGAAGAAAGGCACAT156
TaMIR1675′-CTGCCCAAGGGAACGAGTGA5′-AGAAGTAGTTGAGCCCAACG108
TaMIR1745′-GATGTTGGCTCGACTCACTCAG5′-CTGAGATATTGGCACGGCTCA89
TaMIR3995′-CGTGTGTGAATCACAGGGC5′-GGGCAATTTCCTTTGGCA125
TaMIR4085′-AAGGGATGAGGCAAGCAACAAAA5′-GGAGGGGAGCCAGGGAAGAG119
TaMIR4445′-CAAGGCGCAAAATTAATAGAAGAT5′-ACCTGCCAGTAGATGAAAACA310
TaMIR11175′-AAAATGGGACCTTTAGTACC5′-GCGACTAAAGCTCCTCCCT113
TaMIR11185′-AAGCACGTGGATAGAGGAAG5′-CGAACCAAACATAAAAAAAAGG139
TaMIR11195′-AGCGTCAGCGTGTGAGGCG5′-CGCATAGCACTCCCACTCC158
TaMIR11205′-GGGCAGGTACTCCCTCCGT5′-GTGATTCAGGAGCTGGGAA109
TaMIR11215′-TATATATGTACTCCCTCTGT5′-TACAGTACTCCCTCCGTAA98
TaMIR11225′-CTCCCTCCGTCCCAAAAA5′-ACGAAGTAAAATGAGTGAATCTA211
TaMIR11235′-CCAGGTCTCATATAAATCAGGT5′-AATTCTATGAGACCAGGTCTCA196
TaMIR11245′-ATTACATGACTCAAAGGAACG5′-AGTACCGAGTCTAGCTTCC129
TaMIR11255′-TTTGGCCGTAAATTTAACCA5′-GACCGGTAAATTTAACCAAC138
TaMIR11265′-GTACTCTCTCCGTTCCTAAA5′-ATACTCCCTCCGTTTCTAA164
TaMIR11275′-ACATTAGATCTCAACTAC5′-ATCCACATTAGAATATACTCCC149
TaMIR11285′-ATATGAGAGCATGGGTGAG5′-ACATAAACGCCAAGCCAGAA190
TaMIR11295′-GCCATTCAGCCAGAAGAA5′-ATGGTGGACGGAGGGAGTT269
TaMIR11305′-AAATGTCTTATACTCCCTCC5′-CGTTGCAAATACTACCACTC122
TaMIR11315′-CATTAGTACCGGTTCGTGG5′-CCCAGACTGACAACATCC91
TaMIR11325′-TACTCCCTCCGTTTCACAAT5′-TACTCCTTCCGTTCCATAAT154
TaMIR11335′-ACTTCTTAGTGATAGTGGTCA5′-TAGCAACTTCAGTGAGTATATC180
TaMIR11345′-ACGCGTCCGGCATTCTTCT5′-TACATGTTGTTGCAGCTGCA178
TaMIR11355′-CTACTCCCTCCATTCGGAA5′-TACTCCCTCCGTTCGGAAT108
TaMIR11365′-TACTCCCTCCGTTCCGAAT5′-TACTCCCTCCGTTTCAAATT107
TaMIR11375′-CACGATGACGACGATTAGA5′-GATTTTCCTTATCACTAGCAA148
TaMIR11385′-ATCTTGTATAGGTCTGTCTA5′-CAGTTTGTTTAATTCACATCTAG189
TaMIR11395′-GCCACAGTGGAGAGTAACAT5′-AGTGGGAGTAACTTCAATAGT216
Tab.2  Primers used for detection of the precursor transcripts of the wheat TaMIRs
Fig.1  Semiquantitative RT-PCR results of 32 wheat TaMIR transcripts under conditions of non-stress (CK) and salt stress treatment.
Fig.2  qRT-PCR results of 32 wheat TaMIR transcripts under conditions of non-stress (CK) and salt stress treatment.
Name of TaMIRsContig hitIdentity between TaMIR and contigE-value between TaMIR and contigPairing position between TaMIR and contigAccession number of target genePutative function of target geneE-value between target gene and contig
TaMIR159aContig467213/13 (100%)1.0Query: 8-20 corresponding to Subject: 907-895AF332874phosphoinositide-specific phospholipase C [Oryza sativa]0.0
Contig203513/13 (100%)1.0Query: 4-16 corresponding to Subject: 640-628BAA96769.1putative pyruvate decarboxylase [Oryza sativa]0.0
Contig134113/13 (100%)1.0Query: 7-19 corresponding to Subject: 2392-2380BAD53266.1putative disease resistance protein RPS2 [Oryza sativa]0.0
tp1b0004 g1313/13 (100%)0.92Query: 9-21 corresponding to Subject: 1419-1407No hit
TaMIR160tp1b005m0220/20 (100%)6e-05Query: 1-20 corresponding to Subject: 1743-1724AAP54297.2Auxin response factor 16 [Oryza sativa]0.0
Contig193713/13 (100%)1.0Query: 4-16 corresponding to Subject: 1227-1215BAA07785.3plastid omega-3 fatty acid desaturase [Triticum aestivum]0.0
tp1b0011d0413/13 (100%)1.0Query: 1-13 corresponding to Subject: 670-658NP_001056613.1putative 60S ribosomal protein L13E [Oryza sativa]2e-84
TaMIR167Contig477417/18 (94)0.27Query: 3-20 corresponding to Subject: 3131-3114BAD25169.1putative auxin response transcription factor(ARF6) [Oryza sativa]0.0
tp1b0010k1413/13 (100%)0.92Query: 5-17 corresponding to Subject: 362-350ABF93706.1oxidoreductase, 2OG-Fe oxygenase family protein, expressed [Oryza sativa]0.0
TaMIR174tp1b0006d1121/21 (100%)2e-05Query: 1-21 corresponding to Subject: 1172-1152AT4G00150.1scarecrow-like transcription factor 6 (SCL6)[Arabidopsis thaliana]e-68
Contig54813/13 (100%)1.0Query: 2-14 corresponding to Subject: 509-497AT4G23180.1RLK4, CRK10 (CYSTEINE-RICH RLK10); kinase [Arabidopsis thaliana]2e-37
TaMIR399No hit
TaMIR408Contig75020/20 (100%)7e-05Query: 1-20 corresponding to Subject: 136-117AAO20055.1putative basic blue copper protein [Oryza sativa]6e-38
Contig388820/21 (95%)4e-03Query: 1-21 corresponding to Subject: 513-493BAD17097.1putative Blue copper protein precursor [Oryza sativa]6e-29
Contig62813/13 (100%)1.0Query: 6-18 corresponding to Subject: 293-281CAA55482.1ORF1 [Hordeum vulgare]7e-06
tp1b0009j0113/13 (100%)0.92Query: 4-16 corresponding to Subject: 1601-1589AT4G35740.1RecQl3 (Recq-like 3); ATP binding / ATP-dependent helicase [Arabidopsis thaliana]0.0
tp1b0002i2113/13 (100%)0.92Query: 3-15 corresponding to Subject: 642-630AAZ23777.1plastid division regulator MinD [Sorghum bicolor]1e-82
TaMIR1124Contig538615/15 (100%)7.6-e3Query: 3-17 corresponding to Subject: 1376-1362ABF94408.1Serine carboxypeptidase family protein, expressed [Oryza sativa]1e-175
tp1b0008m0313/13 (100%)1.0Query:10-22 corresponding to Subject: 347-335AAA63164.1ribulose 1,5-bisphosphate carboxylase activase isoform 2 [Hordeum vulgare]0.0
tp1b0005i1813/13 (100%)1.0Query: 10-22 corresponding to Subject: 347-335AAC97932.3ribulose-1,5-bisphosphate carboxylase/oxygenase activase precursor [Zea mays]0.0
tp1b0004o1513/13 (100%)1.0Query: 10-22 corresponding to Subject: 541-529AT5G10770.1chloroplast nucleoid DNA binding protein [Arabidopsis thaliana]4e-78
tp1b000411113/13 (100%)1.0Query: 1-13 corresponding to Subject: 103-91BAA28942.1endonuclease [Hordeum vulgare subsp. vulgare]e-151
tp1b0002p1413/13 (100%)1.0Query: 7-193 corresponding to Subject: 879-867No hit
tp1b0002 g2413/13 (100%)1.0Query: 10-22 corresponding to Subject: 337-325AAA63164.1ribulose 1,5-bisphosphate carboxylase activase isoform 2 [Hordeum vulgare]0.0
TaMIR1133Contig233122/22 (100%)5e-06Query: 10-22 corresponding to Subject: 337-325AT1G30270.1SnRK3.23, ATCIPK23, CIPK23 (CBL-INTERACTING PROTEIN KINASE 23); kinase [Arabidopsis thaliana]9e-08
Contig602518/18 (100%)1e-3Query: 5-22 corresponding to Subject: 3354-3440AT1G63130.1pentatricopeptide (PPR) repeat-containing protein [Arabidopsis thaliana]2e-84
Contig401618/18 (100%)1e-3Query: 2-19 corresponding to Subject: 3327-3510AAK63878.1Putative salt-inducible protein [Oryza sativa]0.0
tp1b0009d2116/16 (100%)1.7e-3Query: 4-19 corresponding to Subject: 923-908No hit
tp1b0016j0615/15 (100%)6.6e-03Query: 4-18 corresponding to Subject: 3406-3392AAX95848.1NB-ARC domain, putative [Oryza sativa]0.0
Tab.3  Features of the target genes putatively interfered by the salt-inducible TaMIRs
1 Aukerman M J, Sakai H (2003). Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2-like target genes. Plant Cell , 15(11): 2730-2741
doi: 10.1105/tpc.016238
2 Axtell M J, Snyder J A, Bartel D P (2007). Common functions for diverse small RNAs of land plants. Plant Cell , 19(6): 1750-1769
doi: 10.1105/tpc.107.051706
3 Chen S L, Polle A (2010). Salinity tolerance of Populus. Plant Biol (Stuttg) , 12(2): 317-333
doi: 10.1111/j.1438-8677.2009.00301.x
4 Chen X (2004). A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science , 303(5666): 2022-2025
doi: 10.1126/science.1088060
5 Cui Q, Yu Z, Purisima E O, Wang E (2006). Principles of microRNA regulation of a human cellular signaling network. Mol Syst Biol , 2: 46
doi: 10.1038/msb4100089
6 Ding D, Zhang L, Wang H, Liu Z, Zhang Z, Zheng Y (2009). Differential expression of miRNAs in response to salt stress in maize roots. Ann Bot (Lond) , 103(1): 29-38
doi: 10.1093/aob/mcn205
7 FAO (2010). FAO Land and Plant Nutrition Management Service. 2008, http://www.fao.org/ag/agl/agll/spush (October29, 2010)
8 Floyd S K, Bowman J L (2004). Gene regulation: ancient microRNA target sequences in plants. Nature , 428(6982): 485-486
doi: 10.1038/428485a
9 Griffiths-Jones S, Saini H K, van Dongen S, Enright A J (2008). miRBase: tools for microRNA genomics. Nucleic Acids Res , 36 (Database issue): D154-D158
10 Han Y, Luan F, Zhu H, Shao Y, Chen A, Lu C, Luo Y, Zhu B (2009). Computational identification of microRNAs and their targets in wheat (Triticum aestivum L.). Science in China C series—Life Sci , 52(11): 1091-1100
11 Kong Y, Elling A A, Chen B, Deng X W (2010). Differential expression of microRNAs in maize inbred and hybrid lines during salt and drought stress. American Journal of Plant Sciences , 1(2): 69-76
doi: 10.4236/ajps.2010.12009
12 Laufs P, Peaucelle A, Morin H, Traas J (2004). MicroRNA regulation of the CUC genes is required for boundary size control in Arabidopsis meristems. Development , 131(17): 4311-4322
doi: 10.1242/dev.01320
13 Livak K J, Schmittgen T D (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)). Method. Methods , 25(4): 402-408
14 Lu S, Sun Y H, Chiang V L (2008). Stress-responsive microRNAs in Populus. Plant J , 55(1): 131-151
doi: 10.1111/j.1365-313X.2008.03497.x
15 Ma S, Gong Q, Bohnert H J (2006). Dissecting salt stress pathways. J Exp Bot , 57(5): 1097-1107
doi: 10.1093/jxb/erj098
16 Millar A A, Waterhouse P M (2005). Plant and animal microRNAs: similarities and differences. Funct Integr Genomics , 5(3): 129-135
doi: 10.1007/s10142-005-0145-2
17 Munns R (2005). Genes and salt tolerance: bringing them together. New Phytol , 167(3): 645-663
doi: 10.1111/j.1469-8137.2005.01487.x
18 Munns R, Tester M (2008). Mechanisms of salinity tolerance. Annu Rev Plant Biol , 59(1): 651-681
doi: 10.1146/annurev.arplant.59.032607.092911
19 Palatnik J F, Allen E, Wu X, Schommer C, Schwab R, Carrington J C, Weigel D (2003). Control of leaf morphogenesis by microRNAs. Nature , 425(6955): 257-263
doi: 10.1038/nature01958
20 Schwab R, Palatnik J F, Riester M, Schommer C, Schmid M, Weigel D (2005). Specific effects of microRNAs on the plant transcriptome. Dev Cell , 8(4): 517-527
doi: 10.1016/j.devcel.2005.01.018
21 Shukla L I, Chinnusamy V, Sunkar R (2008). The role of microRNAs and other endogenous small RNAs in plant stress responses. Biochim Biophys Acta , 1779(11): 743-748
22 Sunkar R, Kapoor A, Zhu J K (2006). Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell , 18(8): 2051-2065
doi: 10.1105/tpc.106.041673
23 Sunkar R, Zhou X, Zheng Y, Zhang W, Zhu J K (2008). Identification of novel and candidate miRNAs in rice by high throughput sequencing. BMC Plant Biol , 8(1): 25
doi: 10.1186/1471-2229-8-25
24 Sunkar R, Zhu J K (2004). Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell , 16(8): 2001-2019
doi: 10.1105/tpc.104.022830
25 Vinocur B, Altman A (2005). Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol , 16(2): 123-132
doi: 10.1016/j.copbio.2005.02.001
26 Wei B, Cai T, Zhang R, Li A, Huo N, Li S, Gu Y Q, Vogel J, Jia J, Qi Y, Mao L (2009). Novel microRNAs uncovered by deep sequencing of small RNA transcriptomes in bread wheat (Triticum aestivum L.) and Brachypodium distachyon (L.) Beauv. Funct Integr Genomics , 9(4): 499-511
doi: 10.1007/s10142-009-0128-97
27 Williams L, Grigg S P, Xie M, Christensen S, Fletcher J C (2005). Regulation of Arabidopsis shoot apical meristem and lateral organ formation by microRNA miR166g and its AtHD-ZIP target genes. Development , 132(16): 3657-3668
doi: 10.1242/dev.01942
28 Xin M, Wang Y, Yao Y, Xie C, Peng H, Ni Z, Sun Q (2010). Diverse set of microRNAs are responsive to powdery mildew infection and heat stress in wheat (Triticum aestivum L.). BMC Plant Biol , 10(1): 123
doi: 10.1186/1471-2229-10-123
29 Yamaguchi T, Blumwald E (2005). Developing salt-tolerant crop plants: challenges and opportunities. Trends Plant Sci , 10(12): 615-620
doi: 10.1016/j.tplants.2005.10.002
30 Yao Y, Guo G, Ni Z, Sunkar R, Du J, Zhu J K, Sun Q (2007). Cloning and characterization of microRNAs from wheat (Triticum aestivum L.). Genome Biol , 8(6): R96
doi: 10.1186/gb-2007-8-6-r96
31 Yin Z J, Shen F F (2010). Identification and characterization of conserved microRNAs and their target genes in wheat (Triticum aestivum). Genet Mol Res , 9(2): 1186-1196
doi: 10.4238/vol9-2gmr805
32 Zhang H, Guo C, Li C, Xiao K (2008). Cloning, characterizatio and expression analysis of two superoxide dismutase (SOD) genes in wheat (Triticum aestivum L.). Front Agric China , 2(2): 141-149
doi: 10.1007/s11703-008-0023-5
33 Zhao B, Liang R, Ge L, Li W, Xiao H, Lin H, Ruan K, Jin Y (2007). Identification of drought-induced microRNAs in rice. Biochem Biophys Res Commun , 354(2): 585-590
doi: 10.1016/j.bbrc.2007.01.022
[1] Lifeng ZHANG, Aihua YAN, Dong TIAN, Shengfang HAN, Dongmei WANG. Cloning and prokaryotic expression of translationally controlled tumor protein (TaTCTP) gene from wheat and preparation of antiserum[J]. Front Agric Chin, 2011, 5(4): 473-478.
[2] Yunwei ZHANG, Xiang GAO, Shengfang HAN, Dongmei WANG. Cloning and prokaryotic expression of TaE3 from wheat and preparation of antiserum[J]. Front Agric Chin, 2011, 5(4): 437-442.
[3] Qian WANG, Wei ZHAO, Zhimin HAO, Jingao DONG. mRNA level of PKA-c gene in Setosphaeria turcica with different nutrition sources under metal ion or osmotic stress[J]. Front Agric Chin, 2011, 5(3): 361-365.
[4] Chengjin GUO, Jincai LI, Wensuo CHANG, Lijun ZHANG, Xirong CUI, Shuwen LI, Kai XIAO. Effects of chromosome substitution on the utilization efficiency of nitrogen, phosphorus, and potassium in wheat[J]. Front Agric Chin, 2011, 5(3): 253-261.
[5] Xirong CUI, Yongsheng ZHANG, Fanghua ZHAO, Chengjin GUO, Juntao GU, Wenjing LU, Xiaojuan LI, Kai XIAO. Molecular characterization and expression analysis of phosphate transporter gene TaPT2-1 in wheat (Triticum aestivum L.)[J]. Front Agric Chin, 2011, 5(3): 274-283.
[6] Yu BAI, Runfang GUO, Hongwei YU, Long JIAO, Shuli DING, Yingmin JIA. Cloning of endo-β-glucanase I gene and expression in Pichia pastoris[J]. Front Agric Chin, 2011, 5(2): 196-200.
[7] Chengjin GUO, Juntao GU, Xiaojuan LI, Wenjing LU, Chunying MA, Kai XIAO. The molecular characterization and function of miRNAs on mediation of target gene silencing in plants[J]. Front Agric Chin, 2011, 5(2): 162-172.
[8] Runfang GUO, Kexue GAO, Hongwei YU, Yingmin JIA. Construction of the expression vector and location analysis of thermotolerant endoglucanase in E. coli[J]. Front Agric Chin, 2011, 5(1): 72-76.
[9] Chengjin GUO, Jinfeng ZHAO, Chuanfan SUN, Juntao GU, Wenjing LU, Xiaojuan LI, Kai XIAO. Expression, transcriptional regulation and functional analysis of phosphate transporter genes in plants[J]. Front Agric Chin, 2011, 5(1): 22-30.
[10] Guiqin LI, Jing QI, Yuxing ZHANG, Zhihua GAO, Dongqian XU, Huixuan LI, Chenmin HUO. Construction and transformation for the antisense expression vector of the polyphenol oxidase gene in Yali pear[J]. Front Agric Chin, 2011, 5(1): 40-44.
[11] Bin HAN, Ruixia BAI, Li LI, Lisha ZHANG, Chuan MA, Jiwei ZHAO, Jinxin WANG, Jianying PENG. Establishment of cDNA-AFLP technology system and stoneless gene difference expression in Ziziphus jujuba Mill.[J]. Front Agric Chin, 2010, 4(4): 449-455.
[12] Linling LI, Hua CHENG, Jianying PENG, Shuiyuan CHENG. Construction of a plant expression vector of chalcone synthase gene of Ginkgo biloba L. and its genetic transformation into tobacco[J]. Front Agric Chin, 2010, 4(4): 456-462.
[13] Chengjin GUO, Jinfeng ZHAO, Cundong LI, Kai XIAO, Haina ZHANG, Chuanfan SUN, Juntao GU, . Identification of senescence-related genes by cDNA-AFLP in cotton ( Gossypium hirsutum L.)[J]. Front. Agric. China, 2010, 4(3): 308-316.
[14] Xiaobo ZHANG, Yuzhu ZUO, Jinghui FAN, Yuan LIU, . Cloning and expression of the membrane protein gene of TGEV HB06 strain[J]. Front. Agric. China, 2010, 4(2): 237-242.
[15] Gh. AZHDARI, A. TAVILI, M. A. ZARE, . Effects of various salts on the germination of two cultivars of Medicago sativa[J]. Front. Agric. China, 2010, 4(1): 63-68.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed