Please wait a minute...
Frontiers of Agriculture in China

ISSN 1673-7334

ISSN 1673-744X(Online)

CN 11-5729/S

Front. Agric. China    2008, Vol. 2 Issue (4) : 493-497    https://doi.org/10.1007/s11703-008-0078-3
Cloning and bioinformatics analysis of cDNA encoding cattle 4 gene
ZHANG Xiaohui, XU Shangzhong, GAO Xue, REN Hongyan, CHEN Jinbao
Institution of Animal Sciences, Chinese Academy of Agricultural Sciences
 Download: PDF(127 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The cDNA of cattle Smad4 gene was cloned by RT-PCR, 3′ RACE and 5′ RACE and got a 3503-bp full-long cDNA sequence. The cloned cattle Smad4 cDNA sequence had been send to GenBank and got an accession number: DQ494856. Cattle Smad4 gene consists of 12 exons and codes 553 amino acids. Cattle Smad4 cDNA shares 99%, 96%, 95%, 91% and 91% similarity in nucleic acid sequences, and 99%, 98%, 98%, 99% and 98% similarity in amino acid sequences with sheep, pig, human, rat and mouse, respectively. Smad4 cDNA was found in the testes, pancreas, liver, small intestine, ovary, lymph, cardiac muscle, skeleton muscle and thymus gland, which indicated that Smad4 was broadly expressed in cattle.
Issue Date: 05 December 2008
 Cite this article:   
XU Shangzhong,ZHANG Xiaohui,GAO Xue, et al. Cloning and bioinformatics analysis of cDNA encoding cattle 4 gene[J]. Front. Agric. China, 2008, 2(4): 493-497.
 URL:  
https://academic.hep.com.cn/fag/EN/10.1007/s11703-008-0078-3
https://academic.hep.com.cn/fag/EN/Y2008/V2/I4/493
1 Anita N, Signe K, Teresa K (2002). Smad4 overexpression causes germ cell ablation and leydig cell hyperplasiain transgenic Mice. American Journal ofPathology, 161: 342–356
2 Bouras M, Tabone E, Bertholon J, Sommer P, Bouvier R, Droz J P, Benahmed M (2000). A novel Smad4 gene mutation in seminoma germ celltumors. Cancer Res, 60: 922–928
3 Chen X, Rubock M J, Whitman M (1996). A transcriptional partner for MADproteins in TGF-ß signalling. Nature, 383: 691–696.
doi:10.1038/383691a0
4 Christophe E, Pierreux F J, Caroline S H (2000). Transforming Growth Factor ßindependent shuttling of Smad4between the cytoplasm and nucleus. Molecularand Cellular Biology, 20(23): 9041–9054.
doi:10.1128/MCB.20.23.9041-9054.2000
5 Germain S, Howell M, Esslemont G M, Hill C S (2000). Homeodomain and winged–helix transcription factors recruitactivated Smads to distinct promoter elements via a common Smad interactionmotif. Genes Dev, 14(4): 435–451
6 Grishin N V (2001). Mh1 domain of Smad is a degraded homing endonuclease. Mo1 Biol, 307: 31–37.
doi:10.1006/jmbi.2000.4486
7 Hahn S A, Schutte M, Hoque A T (1996). DPC4, a candidate tumor suppressorgene at human chromosome 18q21. Science, 271: 350–353.
doi:10.1126/science.271.5247.350
8 Hata A, Seoane J, Lagna G, Montalvo E, Hemmati-Brivanlou A, Massagué J (2000). OAZ usesdistinct DNA-and protein-binding zinc fingers in separate BMP-Smadand Olf signaling pathways. Cell, 100(2): 229–240.
doi:10.1016/S0092-8674(00)81561-5
9 Heldin C H, Miyazono K, ten Dijke P (1997). TGF–ß signaling fromcell membrane to nucleus through SMAD proteins. Nature, 390(6659): 465–471.
doi:10.1038/37284
10 Howell M, Itoh F, Pierreux C E, Valgeirsdóttir S, Itoh S, ten Dijke P, Hill C S (1999). Xenopus Smad4b is the co-Smadcomponentof developmentally- regulated transcription factor complexes responsiblefor induction of early mesodermal genes. Dev Biol, 214: 354–369.
doi:10.1006/dbio.1999.9430
11 Hu J, Zhang Y Q, Liu X P (2001). Location studies of smad4 proteinin the rat testis during postnatal development. Acta Biologiae Experimentalis Sinica, 47(5): 558–564 (in Chinese)
12 Liu H W, Li C, Jin L H, Liu Z Y, Li X J (1995). Ultrastructural studiesand stereological analysis in the development of leydig cells of rattestis. Acta Anatomica Sinica, 16(4): 431–435 (in Chinese)
13 Luukko K, Ylikorkala A, Makela T P (2001). Developmentally regulated expressionof Smad3, Smad4, Smad6, and Smad7 involved in TGF-beta signaling. Mech Dev, 101: 209–212.
doi:10.1016/S0925-4773(00)00556-6
14 Massague J (1998). TGF-ß signal transduction. Annu Rev Biochem, 67: 753–791.
doi:10.1146/annurev.biochem.67.1.753
15 Masuyama N, Hanafusa H, Kusakabe M (1999). Identification of two Smad4 proteinsin Xenopus. Their common and distinct properties. J Biol Chem, 274: 12163–12170.
doi:10.1074/jbc.274.17.12163
16 Miao Z L, Wang Z N, Cheng L Q, Zhang Y (2005). Expression of Smad4 during ratovarian development. Journal of First MilitaryMedical University, 25(2): 127–131
17 Shi Y (2001). Structural insights on Smad function in TGF-ßsignaling. Bioessays, 23(3): 223–232.
doi:10.1002/1521-1878(200103)23:3<223::AID-BIES1032>3.0.CO;2-U
18 Thiagalingam S, Lengauer C, Leach F S, Schutte M, Hahn S A, Overhauser J, Willson J K, Markowitz S, Hamilton S R, Kern S E, Kinzler K W, Vogelstein B (1996). Evaluation of candidate tumour suppressor genes on chromosome18 in colorectal cancers. Nat Genet, 13(3): 343–346.
doi:10.1038/ng0796-343
19 Wong C E, Rougier J P, Frederick M B (1999). Smad3-Smad4 and AP-1 complexes synergizein transcriptional activation of the c-Jun promoter by transforminggrowth factor ß. Mol Cell Biol, 19: 1821–1830
20 Yanagisawa J, Yanagi Y, Masuhiro Y, Suzawa M, Watanabe M, Kashiwagi K, Toriyabe T, Kawabata M, Miyazono K, Kato S (1999). Convergenceof transforming growth factor-ß and vitamin D signaling pathwayson SMAD transcriptional coactivators. Science, 283: 1317–1321.
doi:10.1126/science.283.5406.1317
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed