Please wait a minute...
Frontiers of Agriculture in China

ISSN 1673-7334

ISSN 1673-744X(Online)

CN 11-5729/S

Front. Agric. China    2010, Vol. 4 Issue (3) : 308-316    https://doi.org/10.1007/s11703-010-1020-z
Research articles
Identification of senescence-related genes by cDNA-AFLP in cotton ( Gossypium hirsutum L.)
Chengjin GUO1,Jinfeng ZHAO1,Cundong LI1,Kai XIAO1,Haina ZHANG2,Chuanfan SUN3,Juntao GU4,
1.College of Agronomy, Agricultural University of Hebei, Baoding 071001, China; 2.College of Agronomy, Agricultural University of Hebei, Baoding 071001, China;Research Institute, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China; 3.Technology Development Center of Rural Areas in China, The Ministry of Science and Technology of the People’s Republic of China, Beijing 100045, China; 4.College of Life Sciences, Agricultural University of Hebei, Baoding 071001, China;
 Download: PDF(161 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Premature senescence at the late developmental stage occurs frequently in cotton (Gossypium hirsutum L.) production in North China. It is desirable to develop elite cotton cultivars with non-premature senescence and high photosynthetic capacity. In this study, cDNA-amplified fragment length polymorphism (cDNA-AFLP) analysis was employed to identify the genes that are related to senescence in cotton. Using 64 primer combinations, about 3000 cDNA fragments were generated, and among them 42 had a markedly up-regulated expression pattern with the leaf growth progression. Based on cloning, sequencing, and Blast search analysis, it was determined that 24 TDFs with putative known biologic functions could be classified into several major categories, such as signal transduction, transcription regulation, stress-responsive, primary and secondary metabolism, nutrients recycling, photosynthesis, cell wall biosynthesis, and senescence-related. TDF31, TDF32 and TDF33, with high similarity to the senescent-regulating genes MAP kinase 9 (MKK9) and non-yellowing protein 1(NYE1) from Arabidopsis and bean senescence-associated receptor-like kinase (SARK) could play possible roles in responding or modulating the leaf senescence in cotton. Therefore, leaf senescence in cotton is a complicated network involving many biological processes. Some putative genes with important modulation functions in regulating or responding to the senescence need to be further analyzed.
Keywords cotton (Gossypium hirsutum L.)      senescence      cDNA-AFLP      gene expression      senescence-related transcript-derived fragments (TDFs)      
Issue Date: 05 September 2010
 Cite this article:   
Chengjin GUO,Jinfeng ZHAO,Cundong LI, et al. Identification of senescence-related genes by cDNA-AFLP in cotton ( Gossypium hirsutum L.)[J]. Front. Agric. China, 2010, 4(3): 308-316.
 URL:  
https://academic.hep.com.cn/fag/EN/10.1007/s11703-010-1020-z
https://academic.hep.com.cn/fag/EN/Y2010/V4/I3/308
Altschul S F, Madden T L, Sch?ffer A A, Zhang J, Zhang Z, Miller W, Lipman D J (1997). Gapped BLAST and PSI-BLAST: a new generation of proteindatabase search programs. Nucleic Acids Res, 25(17): 3389–3402

doi: 10.1093/nar/25.17.3389
Alzwiya I A, Morris P C (2007). A mutation in the Arabidopsis MAP kinase kinase 9 generesults in enhanced seedling stress tolerance. Plant Sci, 173(3): 302–308

doi: 10.1016/j.plantsci.2007.06.007
Bachem C W, van der Hoeven R S, de Bruijn S M, Vreugdenhil D, Zabeau M, Visser R G (1996). Visualization of differential gene expression using a novel method of RNA fingerprintingbased on AFLP: analysis of gene expression during potato tuber development. Plant J, 9(5): 745–753

doi: 10.1046/j.1365-313X.1996.9050745.x
Breyne P, Dreesen R, Vandepoele K, De Veylder L, Van Breusegem F, Callewaert L, Rombauts S, Raes J, Cannoot B, Engler G, Inzé D, Zabeau M (2002). Transcriptome analysis during cell division in plants. Proc Natl Acad Sci USA, 99(23):14825–14830

doi: 10.1073/pnas.222561199
Buchanan-Wollaston V (1997). The molecular biology of leaf senescence. J Exp Bot, 48(2): 181–199

doi: 10.1093/jxb/48.2.181
Buchanan-Wollaston V, Earl S, Harrison E, Mathas E, Navabpour S, Page T, Pink D (2003). The molecular analysis of leaf senescence—agenomics approach. Plant Biotechnol J, 1(1): 3–22

doi: 10.1046/j.1467-7652.2003.00004.x
Buchanan-Wollaston V, Page T, Harrison E, Breeze E, Lim P O, Nam H G, Lin J F, Wu S H, Swidzinski J, Ishizaki K, Leaver C J (2005). Comparative transcriptome analysis reveals significant differences in gene expressionand signalling pathways between developmental and dark/starvation-inducedsenescence in Arabidopsis. Plant J, 42(4): 567–585

doi: 10.1111/j.1365-313X.2005.02399.x
Ditt R F, Nester E W, Comai L (2001). Plant gene expression response to Agrobacterium tumefaciens. Proc Natl Acad Sci USA, 98(19): 10954–10959

doi: 10.1073/pnas.191383498
Gan S, Amasino R M (1995). Inhibition of leaf senescence by autoregulated productionof cytokinin. Science, 270(5244): 1986–1988

doi: 10.1126/science.270.5244.1986
Gepstein S, Sabehi G, Carp MJ, Hajouj T, Nesher MF, Yariv I, Dor C, Bassani M (2003). Large-scale identification of leaf senescence-associatedgenes. Plant J36: 629–642

doi: 10.1046/j.1365-313X.2003.01908.x
Gupta S, Chakraborti D, Rangi R K, Basu D, Das S (2009). A molecular insight into the early events of chickpea (Cicer arietinum) and Fusarium oxysporum f. sp. ciceri(race 1) interaction through cDNA-AFLP analysis. Phytopathology, 99(11): 1245–1257

doi: 10.1094/PHYTO-99-11-1245
Hajouj T, Michelis R, Gepstein S (2000). Cloning and characterization of a receptor-like protein kinase gene associatedwith senescence. Plant Physiol, 124(3): 1305–1314

doi: 10.1104/pp.124.3.1305
He Y, Tang W, Swain J D, Green A L, Jack T P, Gan S (2001). Networking senescence-regulatingpathways by using Arabidopsis enhancer trap lines. Plant Physiol, 126(2): 707–716

doi: 10.1104/pp.126.2.707
Hinderhofer K, Zentgraf U (2001). Identification of a transcription factor specificallyexpressed at the onset of leaf senescence. Planta, 213(3): 469–473

doi: 10.1007/s004250000512
H?rtensteiner S (2006). Chlorophyll degradation during senescence. Annu Rev Plant Biol, 57(1): 55–77

doi: 10.1146/annurev.arplant.57.032905.105212
Ichimura M, and the MAPK Group (2002). Mitogen-activated protein kinase cascades in plants:a new nomenclature. Trends Plant Sci, 7(7): 301–308

doi: 10.1016/S1360-1385(02)02302-6
Jayaraman A, Puranik S, Rai N K, Vidapu S, Sahu P P, Lata C, Prasad M (2008). cDNA-AFLP analysis reveals differential gene expressionin response to salt stress in foxtail millet (Setaria italica L.). Mol Biotechnol, 40(3): 241–251

doi: 10.1007/s12033-008-9081-4
Kong Z, Li M, Yang W, Xu W, Xue Y (2006). A novel nuclear-localized CCCH-Type zinc finger protein, OsDOS, is involvedin delaying leaf senescence in rice. Plant Physiol, 141: 1376–1388

doi: 10.1104/pp.106.082941
Li Y, Tian Z, Liu J, Xie C (2009). Comparative cDNA-AFLP analysis reveals that DL-beta-amino-butyricacid induces resistance through early activation of the host-defensegenes in potato. Physiol Plant, 136(1): 19–29

doi: 10.1111/j.1399-3054.2009.01209.x
Lichtenthaler H K (1984). Chlorophyll and carotenoid pigments of photosynthetic biomembranes. Methods Enzymol, 148: 350–382

doi: 10.1016/0076-6879(87)48036-1
Lim P O, Woo H R, Nam H G (2003). Molecular genetics of leaf senescence in Arabidopsis. Trends Plant Sci, 8(6): 272–278

doi: 10.1016/S1360-1385(03)00103-1
Lin J F, Wu S H (2004). Molecular events in senescing Arabidopsis leaves. Plant J, 39(4): 612–628

doi: 10.1111/j.1365-313X.2004.02160.x
Liu L T, Li C D, Sun H C, Lu W J, Feng LX (2007). Physiological effects of nitrogen nutrition on the senescence of cotton leaves atdifferent positions. Plant Nutrition andFertilizer Science, (5): 180–189 (in Chinese)
Liu L T, Li C D, Sun H C, Zhang Y J, Bai Z Y, Feng L X (2009). Effects of nitrogen on cotton senescenceand the corresponding physiological mechanisms. Agric Sci China, 42(5): 1575–1581(in Chinese)
Miao Y, Laun T, Zimmermann P, Zentgraf U (2004). Targets of the WRKY53 transcription factor and its role during leaf senescence in Arabidopsis. Plant Mol Biol, 55(6): 853–867
Nakagami H, Pitzschke A, Hirt H (2005). Emerging MAP kinase pathways in plant stress signalling. Trends Plant Sci, 10(7): 339–346

doi: 10.1016/j.tplants.2005.05.009
Nam H G (1997). The molecular genetic analysis ofleaf senescence. Curr Opin Biotechnol, 8(2): 200–207

doi: 10.1016/S0958-1669(97)80103-6
Nooden L D, Guiamet J J, John I (1997). Senescence mechanisms. Physiol Plant, 101(4): 746–753

doi: 10.1111/j.1399-3054.1997.tb01059.x
Park J H, Oh S A, Kim Y H, Woo H R, Nam H G (1998). Differential expression of senescence-associated mRNAs during leaf senescence inducedby different senescence-inducing factors in Arabidopsis. Plant Mol Biol, 37(3): 445–454

doi: 10.1023/A:1005958300951
Qiao H, Wang F, Zhao L, Zhou J, Lai Z, Zhang Y, Robbins T P, Xue Y (2004). The F-boxprotein AhSLF-S2 controls the pollen function of S-RNase-based self-incompatibility. Plant Cell, 16(9): 2307–2322

doi: 10.1105/tpc.104.024919
Quirino B F, Normanly J, Amasino R M (1999). Diverse range of gene activity during Arabidopsis thaliana leaf senescenceincludes pathogen-independent induction of defense-related genes. Plant Mol Biol, 40(2): 267–278

doi: 10.1023/A:1006199932265
Ren G, An K, Liao Y, Zhou X, Cao Y, Zhao H, Ge X, Kuai B (2007). Identification of a novel chloroplast protein AtNYE1 regulating chlorophyll degradationduring leaf senescence in Arabidopsis. Plant Physiol, 144(3): 1429–1441

doi: 10.1104/pp.107.100172
Robatzek S, Somssich I E (2001). A new member of the Arabidopsis WRKY transcription factorfamily, AtWRKY6, is associated with both senescence- and defence-relatedprocesses. Plant J, 28(2): 123–133

doi: 10.1046/j.1365-313X.2001.01131.x
Robatzek S, Somssich IE (2002). Targets of AtWRKY6 regulation during plant senescenceand pathogen defense. Genes Dev, 16: 1139–1149

doi: 10.1101/gad.222702
Smart C M (1994). Gene expression during leaf senescence. New Phytol, 126(3): 419–448

doi: 10.1111/j.1469-8137.1994.tb04243.x
Tanaka A, Tanaka R (2006). Chlorophyll metabolism. Curr Opin Plant Biol, 9(3): 248–255

doi: 10.1016/j.pbi.2006.03.011
Thomas H, Howarth C J (2000). Five ways to stay green. J Exp Bot, 51(90001 Spec No): 329–337
Thomas H, Stoddart J L (1975). Separation of chlorophyll degradation from other senescenceprocesses in leaves of a mutant genotype of medow fescue (Festuca pratensis L.). Plant Physiol, 56(3): 438–441

doi: 10.1104/pp.56.3.438
Weaver L M, Gan S, Quirino B, Amasino R M (1998). A comparison of the expression patterns of several senescence-associatedgenes in response to stress and hormone treatment. Plant Mol Biol, 37(3): 455–469

doi: 10.1023/A:1005934428906
Wright P R (1999). Premature senescence of cotton (Gossypium hirsutum L.) – Predominantlya potassium disorder caused by an imbalance of source and sink. Plant Soil, 211(2): 231–239

doi: 10.1023/A:1004652728420
Yoo S D, Cho Y H, Tena G, Xiong Y, Sheen J (2008). Dual control of nuclear EIN3 by bifurcate MAPK cascades in C2H4 signalling. Nature, 451(7180): 789–795

doi: 10.1038/nature06543
YU S X, Huang Z M, Jiang R Y, Yuan R H, Ni X Z, Xu Z S, Xu J W, Wang J Y, Liu J L (1994). Studies of leaf senescence characterizations of severalcotton cultivars with short growth-seasons. Cotton Science, (S1): 31–35 (in Chinese)
Zhou C, Cai Z, Guo Y, Gan S (2009). An Arabidopsis mitogen-activated protein kinase cascade,MKK9-MPK6, plays a role in leaf senescence. Plant Physiol, 150(1): 167–177

doi: 10.1104/pp.108.133439
[1] Qian WANG, Wei ZHAO, Zhimin HAO, Jingao DONG. mRNA level of PKA-c gene in Setosphaeria turcica with different nutrition sources under metal ion or osmotic stress[J]. Front Agric Chin, 2011, 5(3): 361-365.
[2] Yu BAI, Runfang GUO, Hongwei YU, Long JIAO, Shuli DING, Yingmin JIA. Cloning of endo-β-glucanase I gene and expression in Pichia pastoris[J]. Front Agric Chin, 2011, 5(2): 196-200.
[3] Shahri WASEEM, Tahir INAYATULLAH. Physiological and biochemical changes associated with flower development and senescence in Consolida ajacis Nieuwl cv. Violet blue[J]. Front Agric Chin, 2011, 5(2): 201-208.
[4] Bin HAN, Ruixia BAI, Li LI, Lisha ZHANG, Chuan MA, Jiwei ZHAO, Jinxin WANG, Jianying PENG. Establishment of cDNA-AFLP technology system and stoneless gene difference expression in Ziziphus jujuba Mill.[J]. Front Agric Chin, 2010, 4(4): 449-455.
[5] Haina ZHANG, Fanghua ZHAO, Yuxin ZHAO, Chengjin GUO, Cundong LI, Kai XIAO. Establishment of transgenic cotton lines with high efficiency via pollen-tube pathway[J]. Front. Agric. China, 2009, 3(4): 359-365.
[6] CAO Yunfei, WANG Jiaojiao, GUO Li, XIAO Kai. Identification, characterization and expression analysis of transcription factor () genes in rice ( L.)[J]. Front. Agric. China, 2008, 2(3): 253-261.
[7] GUO Li, WANG Jiaojiao, XIAO Kai. Isolation and characterization of a novel phytase gene () from soybean ( (L.) Merr.)[J]. Front. Agric. China, 2008, 2(1): 30-36.
[8] Hassan Imran, ZHANG Yuxing, DU Guoqiang, WANG Guoying, ZHANG Jianghong. Effect of salicylic acid (SA) on delaying fruit senescence of Huang Kum pear[J]. Front. Agric. China, 2007, 1(4): 456-459.
[9] WANG Jiaojiao, GUO Li, XIAO Kai. Characterization and expression analysis of calcium-dependent protein kinase genes in rice (Oryza sativa L.)[J]. Front. Agric. China, 2007, 1(4): 397-404.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed