Please wait a minute...
Frontiers of Agriculture in China

ISSN 1673-7334

ISSN 1673-744X(Online)

CN 11-5729/S

Front Agric Chin    2009, Vol. 3 Issue (2) : 199-208    https://doi.org/10.1007/s11703-009-0028-8
REVIEW
Cell reprogramming for the creation of patient-specific pluripotent stem cells by defined factors
Huiqun YIN1(), Hongguo CAO1, Yunhai ZHANG1, Yong TAO1, Xiaorong ZHANG1(), Heng WANG1
1. College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China;; 2. Anhui Provincial Animals Genetic Resources Conservation Center, Hefei 231283, China
 Download: PDF(239 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Pluripotent stem cells (PSCs), characterized by being able to differentiate into various types of cells, are generally regarded as the most promising sources for cell replacement therapies. However, as typical PSCs, embryonic stem cells (ESCs) are still far away from human clinics so far due to ethical issues and immune rejection response. One way to avoid such problems is to use stem cells derived from autologous somatic cells. Up to date, PSCs could be obtained by reprogramming somatic cells to pluripotent state with approaches including somatic cell nuclear transfer (SCNT), fusion with stem cells, coculture with cells’ extracts, and induction with defined factors. Among these, through reprogramming somatic cells directly by retroviral transduction of transcription factors, induced pluripotent stem (iPS) cells have been successfully generated in both mouse and human recently. These iPS cells shared similar morphology and growth properties to ESCs, could express ESCs marker genes, and could produce adult or germline-competent chimaeras and differentiate into a variety of cell types, including germ cells. Moreover, with iPS technique, patient specific PSCs could be derived more easily from handful somatic cells in human without immune rejection responses innately connected to ESCs. Consequently, generation of iPS cells would be of great help to further understand disease mechanisms, drug screening, and cell transplantation therapies as well. In summary, the recent progress in the study of cell reprogramming for the creation of patient-specific pluripotent stem cells, some existing problems, and research perspectives were suggested.

Keywords somatic cells      pluripotent stem cells      iPS cells      reprogramming     
Corresponding Author(s): YIN Huiqun,Email:milklecherry@163.com; ZHANG Xiaorong,Email:zxr@ahau.edu.cn   
Issue Date: 05 June 2009
 Cite this article:   
Huiqun YIN,Hongguo CAO,Yunhai ZHANG, et al. Cell reprogramming for the creation of patient-specific pluripotent stem cells by defined factors[J]. Front Agric Chin, 2009, 3(2): 199-208.
 URL:  
https://academic.hep.com.cn/fag/EN/10.1007/s11703-009-0028-8
https://academic.hep.com.cn/fag/EN/Y2009/V3/I2/199
Fig.1  Four strategies to induce somatic cells to pluripotency
Fig.2  Reprogramming somatic cells to iPS cells by virus vectors with four transcription factors
1 Adhikary S, Eilers M (2005). Transcriptional regulation and transformation by Myc proteins. Nat Rev Mol Cell Biol , 6: 635-645
doi: 10.1038/nrm1703
2 Alon U (2007). Network motifs: theory and experimental approaches. Nat Rev Genet , 8: 450-461
doi: 10.1038/nrg2102
3 Aoi T, Yae K, Nakagawa M, Ichisaka T, Okita K, Takahashi K, Chiba T, Yamanaka S (2008). Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science , 321(5889): 699-702
doi: 10.1126/science.1154884
4 Blelloch R, Venere M, Yen J, Ramalho-Santos M (2007). Generation of induced pluripotent stem cells in the absence of drug selection. Cell Stem Cell , 1: 245-247
doi: 10.1016/j.stem.2007.08.008
5 Boyer L A, Lee T I, Cole M F, Johnstone S E, Levine S S, Zucker J P, Guenther M G, Kumar R M, Murray H L, Jenner R G, Gifford D K, Melton D A, Jaenisch R, Young R A (2005). Core transcriptional regulatory circuitry in human embryonic stem cells. Cell , 122: 947-956
doi: 10.1016/j.cell.2005.08.020
6 Brambrink T, Foreman R, Welstead G G, Lengner C J, Wernig M, Suh H, Jaenisch R (2008). Sequential expression of pluripotency markers during direct reprogramming of mouse somatic cells. Cell Stem Cell , 2: 151-159
doi: 10.1016/j.stem.2008.01.004
7 Bru T, Clarke C, McGrew M J, Sang H M, Wilmut I, Blow J J (2008). Rapid induction of pluripotency genes after exposure of human somatic cells to mouse ES cell extracts. Exp Cell Res , 314(14): 2634-2642
doi: 10.1016/j.yexcr.2008.05.009
8 Cartwright P, McLean C, Sheppard A, Rivett D, Jones K, Dalton S (2005). LIF/STAT3 controls ES cell self-renewal and pluripotency by a Myc-dependent mechanism. Development , 132: 885-896
doi: 10.1242/dev.01670
9 Cawley S, Bekiranov S, Ng H H, Kapranov P, Sekinger E A, Kampa D, Piccolboni A, Sementchenko V, Cheng J, Williams A J, Wheeler R, Wong B, Drenkow J, Yamanaka M, Patel S, Brubaker S, Tammana H, Helt G, Struhl K, Gingeras T R (2004). Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs. Cell , 116: 499-509
doi: 10.1016/S0092-8674(04)00127-8
10 Collas P, Taranger C K (2006a). Toward reprogramming cells to pluripotency. Ernst Schering Res Found Workshop , 60: 47-67
doi: 10.1007/3-540-31437-7_5
11 Collas P, Taranger C K (2006b). Epigenetic reprogramming of nuclei using cell extracts. Stem Cell Rev , 2: 309-317
doi: 10.1007/BF02698058
12 Collas P, Taranger C K, Boquest A C, Noer A, Dahl J A (2006). On the way to reprogramming cells to pluripotency using cell-free extracts. Reproductive Bio Medicine , 12: 762-770
13 Cowan C A, Atienza J, Melton D A, Eggan K (2005). Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells. Science , 309: 1369-1373
doi: 10.1126/science.1116447
14 Darr H, Benvenisty N (2006). Factors involved in self-renewal and pluripotency of embryonic stem cells. Handb Exp Pharmacol , 174: 1-19
15 Dimos J T, Rodolfa K T, Niakan K K, Weisenthal L M, Mitsumoto H, Chung W, Croft G F, Saphier G, Leibel R, Goland R, Wichterle H, Henderson C E, Eggan K (2008). Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science , 321(5893): 1218-1221
doi: 10.1126/science.1158799
16 Dominguez-Sola D, Ying C Y, Grandori C, Ruggiero L, Chen B, Li M, Galloway D A, Gu W, Gautier J, Dalla-Favera R (2007). Nontranscriptional control of DNA replication by c-Myc. Nature , 448: 445-451
doi: 10.1038/nature05953
17 Fong H, Hohenstein K A, Donovan P J (2008). Regulation of Self-renewal and pluripotency by Sox2 in human embryonic stem cells. Stem Cells , 26(8): 1931-1938
doi: 10.1634/stemcells.2007-1002
18 Grinnemo K H, Sylvén C, Hovatta O, Dellgren G, Corbascio M (2008). Immunogenicity of human embryonic stem cells. Cell Tissue Res , 331: 67-78
doi: 10.1007/s00441-007-0486-3
19 Hanna J, Markoulaki S, Schorderet P, Carey B W, Beard C, Wernig M, Creyghton M P, Steine E J, Cassady J P, Foreman R, Lengner C J, Dausman J A, Jaenisc R (2008). Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency. Cell , 133: 250-264
doi: 10.1016/j.cell.2008.03.028
20 Hanna J, Wernig M, Markoulaki S, Sun C W, Meissner A, Cassady J P, Beard C, Brambrink T, Wu L C, Townes T M, Jaenisch R (2007). Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science , 318: 1920-1923
21 Hansis C, Barreto G, Maltry N, Niehrs C (2004). Nuclear reprogramming of human somatic cells by xenopus egg extract requires BRG1. Curr Biol , 14: 1475-1480
doi: 10.1016/j.cub.2004.08.031
22 Harley V R, Lovell-Badge R, Goodfellow P N (1994). Definition of a consensus DNA binding site for SRY. Nucleic Acids Res , 22: 1500-1501
doi: 10.1093/nar/22.8.1500
23 Hochedlinger K, Jaenisch R (2006). Nuclear reprogramming and pluripotency. Nature , 441: 1061-1067
doi: 10.1038/nature04955
24 Jaenisch R, Young R (2002). Myc suppression of the p21 (Cip1) Cdk inhibitor influences the outcome of the p53 response to DNA damage. Nature , 419: 729-734
doi: 10.1038/nature01119
25 Jaenisch R, Young R (2008). Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell , 132: 567-582
doi: 10.1016/j.cell.2008.01.015
26 Jiang J, Chan Y S, Loh Y H, Cai J, Tong G Q, Lim C A, Robson P, Zhong S, Ng H H (2008). A core Klf circuitry regulates self-renewal of embryonic stem cells. Nat Cell Biol , 10: 353-360
doi: 10.1038/ncb1698
27 Kfoury C (2007). Therapeutic cloning: promises and issues. Mcgill J Med , 10: 112-120
28 Kim J B, Zaehres H, Wu G, Gentile L, Ko K, Sebastiano V, Araúzo-Bravo M J, Ruau D, Han D W, Zenke M, Sch?ler H R (2008). Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature , 454(7204): 646-650
doi: 10.1038/nature07061
29 Klimanskaya I, Rosenthal N, Lanza R (2008). Derive and conquer: sourcing and differentiating stem cells for therapeutic applications. Nat Rev Drug Discov , 7: 131-142
doi: 10.1038/nrd2403
30 Knoepfler P S, Zhang X Y, Cheng P F, Gafken P R, McMahon S B, Eisenman R N (2006). Myc influences global chromatin structure. EMBO J , 25: 2723-2734
doi: 10.1038/sj.emboj.7601152
31 Kohda T, Inoue K, Ogonuki N, Miki H, Naruse M, Kaneko-Ishino T, Ogura A, Ishino F (2005). Variation in gene expression and aberrantly regulated chromosome regions in cloned mice. Biol Reprod , 73: 1302-1311
doi: 10.1095/biolreprod.105.044958
32 Lagarkova M A, Volchkov P Y, Lyakisheva A V, Philonenko E S, Kiselev S L (2006). Diverse epigenetic profile of novel human embryonic stem cell lines. Cell Cycle , 5: 416-420
33 Li Y, McClintick J, Zhong L, Edenberg H J, Yoder M C, Chan R J (2005). Murine embryonic stem cell differentiation is promoted by SOCS-3 and inhibited by the zinc finger transcription factor Klf4. Blood , 105: 635-637
doi: 10.1182/blood-2004-07-2681
34 Liao J, Wu Z, Wang Y, Cheng L, Cui C, Gao Y, Chen T, Rao L, Chen, S, Jia N, Dai H, Xin S, Kang J, Pei G, Xiao L (2008). Enhanced efficiency of generating induced pluripotent stem (iPS) cells from human somatic cells by a combination of six transcription factors. Cell Res , 18: 600-603
doi: 10.1038/cr.2008.51
35 Lin T, Chao C, Saito S, Mazur S J, Murphy M E, Appella E, Xu Y (2005). p53 induces differentiation of mouse embryonic stem cells by suppressing Nanog expression. Nat Cell Bio , 7: 165-171
doi: 10.1038/ncb1211
36 Lowry W E, Richter L, Yachechko R, Pyle A D, Tchieu J, Sridharan R, Clark A T, Plath K (2008). Generation of human induced pluripotent stem cells from dermal fibroblasts. Proc Natl Acad Sci U S A , 105: 2883-2888
doi: 10.1073/pnas.0711983105
37 Maherali N, Sridharan R, Xie W, Utikal J, Eminli S, Arnold K, Stadtfeld M, Yachechko R, Tchieu J, Jaenisch R, Plath K, Hochedlinger K (2007). Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell , 1: 55-70
doi: 10.1016/j.stem.2007.05.014
38 Mali P, Ye Z, Hommond H H, Yu X, Lin J, Chen G, Zou J, Cheng L (2008). Improved efficiency and pace of generating induced pluripotent stem cells from human adult and fetal fibroblasts. Stem Cells , 26(8): 1998-2005
doi: 10.1634/stemcells.2008-0346
39 Matsumura H, Tada M, Otsuji T, Yasuchika K, Nakatsuji N, Surani A, Tada T (2007). Targeted chromosome elimination from ES-somatic hybrid cells. Nat Methods , 4: 23-25
doi: 10.1038/nmeth973
40 Meissner A, Wernig M, Jaenisch R (2007). Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells. Nat Biotechnol , 25: 1177-1181
doi: 10.1038/nbt1335
41 Miller R A, Ruddle F H (1976). Pluripotent teratocarcinoma-thymus somatic cell hybrids, Cell , 9: 45-55
doi: 10.1016/0092-8674(76)90051-9
42 Nakagawa M, Koyanagi M, Tanabe K, Takahashi K, Ichisaka T, Aoi T, Okita K, Mochiduki Y, Takizawa N, Yamanaka S (2008). Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechno , 26: 101-106
doi: 10.1038/nbt1374
43 Nakatake Y, Fukui N, Iwamats Y, Masui S, Takahashi K, Yagi R, Yagi K, Miyazaki J, Matoba R, Ko M S, Niwa H (2006). Klf4 cooperates with Oct3/4 and Sox2 to activate the Lefty1 core promoter in embryonic stem cells. Mol Cell Biol , 26(20): 7772-7782
doi: 10.1128/MCB.00468-06
44 Neri T, Monti M, Rebuzzini P, Merico V, Garagna S, Redi C A, Zuccotti M (2007). Mouse fibroblasts are reprogrammed to Oct-4 and Rex-1 gene expression and alkaline phosphatase activity by embryonic stem cell extracts. Cloning Stem Cells , 9: 394-406
doi: 10.1089/clo.2006.0011
45 Okamoto K, Okazawa H, Okuda A, Sakai M, Muramatsu M, Hamada H (1990). A novel octamer binding transcription factor is differentially expressed in mouse embryonic cells. Cell , 60: 461-472
doi: 10.1016/0092-8674(90)90597-8
46 Okita K, Ichisaka T, Yamanaka S (2007). Generation of germline-competent induced pluripotent stem cells. Nature , 448: 313-317
doi: 10.1038/nature05934
47 Park I H, Daley G Q (2007). Debugging cellular reprogramming. Nat Cell Biol , 9: 871-873
doi: 10.1038/ncb0807-871
48 Park I H, Zhao R, West J A, Yabuuchi A, Huo H, Ince T A, Lerou P H, Lensch M W, Daley G Q (2008). Reprogramming of human somatic cells to pluripotency with defined factors. Nature , 451: 141-146
doi: 10.1038/nature06534
49 Pasquinelli A E, Hunter S, Bracht J (2005). MicroRNAs: a developing story. Curr Opin Genet Dev , 15: 200-205
doi: 10.1016/j.gde.2005.01.002
50 Pesce M, Gross M K, Scholer H R (1998). In line with our ancestors: Oct-4 and the mammalian germ. Bioessays , 20: 722-732
doi: 10.1002/(SICI)1521-1878(199809)20:9<722::AID-BIES5>3.0.CO;2-I
51 Pochampally R R, Neville B T, Schwarz E J, Li M M, Prockop D J (2004). Rat adult stem cells (marrow stromal cells) engraft and differentiate in chick embryos without evidence of cell fusion. Proc Natl Acad Sci U S A , 101: 9282-9285
doi: 10.1073/pnas.0401558101
52 Qin D, Li W, Zhang J, Pei D (2007). Direct generation of ES-like cells from unmodified mouse embryonic fibroblasts by Oct4/Sox2/Myc/Klf4. Cell Res , 17: 959-962
doi: 10.1038/cr.2007.92
53 Rosner M H, Vigano M A, Ozato K, Timmons P M, Poirier F, Rigby P W, Staudt L M (1990). A POU-domain transcription factor in early stem cells and germ cells of the mammalian embryo. Nature , 345: 686-692
doi: 10.1038/345686a0
54 Rowland B D, Bernards R, Peeper D S (2005). The KLF4 tumour suppressor is a transcriptional repressor of p53 that acts as a context-dependent oncogene. Nat Cell Biol , 7: 1074-1082
doi: 10.1038/ncb1314
55 Silva J, Chambers I, Pollard S, Smith A (2006). Nanog promotes transfer of pluripotency after cell fusion. Nature , 441: 997-1001
doi: 10.1038/nature04914
56 Smith S L, Everts R E, Tian X C, Du F, Sung L Y, Rodriguez-Zas S L, Jeong B S, Renard J P, Lewin H A, Yang X (2005). Global gene expression profiles reveal significant nuclear reprogramming by the blastocyst stage after cloning. Proc Natl Acad Sci U S A , 102: 17582-17587
doi: 10.1073/pnas.0508952102
57 Sonia S, Michel P (2007). Oct-3/4: Not just a gatekeeper of pluripotency for embryonic stem cell, a cell fate instructor through a gene dosage effect. Cell Cycle , 6: 8-10
58 Stadtfeld M, Brennand K, Hochedlinger K (2008b). Reprogramming of pancreatic Beta cells into induced pluripotent stem cells. Curr Biol , 18: 890-894
doi: 10.1016/j.cub.2008.05.010
59 Stadtfeld M, Maherali N, Breault D T, Hochedlinger K (2008a). Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse. Cell Stem Cell , 2: 230-240
doi: 10.1016/j.stem.2008.02.001
60 Tada M, Morizane A, Kimura H, Kawasaki H, Ainscough J F, Sasai Y, Nakatsuji N, Tada T (2003). Pluripotency of reprogrammed somatic genomes in embryonic stem hybrid cells. Dev Dyn , 227: 504-510
doi: 10.1002/dvdy.10337
61 Tada M, Tada T, Lefebvre L, Barton S C, Surani, M A (1997). Embryonic germ cells induce epigenetic reprogramming of somatic nucleus in hybrid cells. EMBO J , 16: 6510-6520
doi: 10.1093/emboj/16.21.6510
62 Takahashi K, Okita K, Nakagawa M, Yamanaka S (2007a). Induction of pluripotent stem cells from fibroblast cultures. Nat Protoc , 2: 3081-3089
doi: 10.1038/nprot.2007.418
63 Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007b). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell , 131: 861-872
doi: 10.1016/j.cell.2007.11.019
64 Takahashi K, Yamanaka S (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell , 126: 663-676
doi: 10.1016/j.cell.2006.07.024
65 Tateishi K, He J, Taranova O, Liang G, Liang G, D'Alessio A C, Zhang Y (2008). Generation of insulin-secreting islet-like clusters from human skin fibroblasts. J Biol Chem , 283(46): 31601-31607
66 Tokuzawa Y, Kaiho E, Maruyama M, Takahashi K, Mitsui K, Maeda M, Niwa H, Yamanaka S (2003). Fbx15 is a novel target of Oct3/4 but is dispensable for embryonic stem cell self-renewal and mouse development. Mol Cell Biol , 23: 2699-2708
doi: 10.1128/MCB.23.8.2699-2708.2003
67 Wernig M, Meissner A, Cassady J P, Jaenisch R (2008). c-Myc is dispensable for direct reprogramming of mouse fibroblasts. Cell Stem Cell , 2: 10-12
doi: 10.1016/j.stem.2007.12.001
68 Wernig M, Meissner A, Foreman R, Brambrink T, Ku M, Hochedlinger K, Bernstein B E, Jaenisch R (2007). In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature , 448: 318-324
doi: 10.1038/nature05944
69 Wernig M, Zhao J P, Pruszak J, Hedlund E, Fu D, Soldner F, Broccoli V, Constantine-Paton M, Isacson O, Jaenisch R (2008). Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson's disease. Proc Natl Acad Sci U S A , 105: 5856-5861
doi: 10.1073/pnas.0801677105
70 Wood H B, Episkopou V (1999). Comparative expression of the mouse Sox1, Sox2 and Sox3 genes from pre-gastrulation to early somite stages. Mech Dev , 86: 197-201
doi: 10.1016/S0925-4773(99)00116-1
71 Yu J, Vodyanik M A, Smuga-Otto K, Antosiewicz-Bourget J, Frane J L, Tian S, Nie J, Jonsdottir G A, Ruotti V, Stewart R, Slukvin I I, Thomson J A (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science , 318: 1917-1920
doi: 10.1126/science.1151526
72 Zeineddine D, Papadimou E, Chebli K, Gineste M, Liu J, Grey C, Thurig S, Behfar A, Wallace V A, Skerjanc I S, Pucéat M (2006). Oct-3/4 dose dependently regulates specification of embryonic stem cells toward a cardiac lineage and early heart development. Dev Cell , 11: 535-546
doi: 10.1016/j.devcel.2006.07.013
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed