Please wait a minute...
Frontiers of Agriculture in China

ISSN 1673-7334

ISSN 1673-744X(Online)

CN 11-5729/S

Front. Agric. China    2008, Vol. 2 Issue (3) : 245-252    https://doi.org/10.1007/s11703-008-0063-x
Assessment of genetic diversity in glandless cotton germplasm resources by using agronomic traits and molecular markers
LI Zhikun, WANG Xingfen, ZHANG Yan, ZHANG Guiyin, WU Liqiang, CHI Jina, Zhiying MA
College of Agronomy, Agricultural University of Hebei; Hebei Key Laboratory of Crop Germplasm Resources
 Download: PDF(199 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Seventy-one glandless cotton germplasm resources were firstly evaluated genetically by using nine agronomic traits, 33 simple sequence repeat (SSR) primers and ten amplified fragment length polymorphism (AFLP) primer combinations. Principal component analysis (PCA) of the agronomic traits showed that the first six principal components (PCs) explained a total of 86.352% of the phenotypic variation. A total of 329 alleles were amplified for 33 SSR primers, and 232 polymorphic bands in a total of 389 bands were obtained by using ten AFLP primer combinations. The average polymorphic information content (PIC) value was 0.80 and 0.18 for SSR primers and AFLP primer combinations, respectively. The DIST (average taxonomic distance) and DICE (Nei and Li’s pairwise distance) coefficients ranged from 0.373 to 3.164 and 0.786 to 0.948, respectively, for agronomic traits and SSR&AFLP data based on UPGMA analysis. This suggested that there was a higher diversity in the evaluated population for both agronomic traits and molecular markers. The Mantel’s test showed that the correlation between the dendrograms based on agronomic traits and SSR&AFLP data was non-significant.
Issue Date: 05 September 2008
 Cite this article:   
LI Zhikun,WANG Xingfen,ZHANG Yan, et al. Assessment of genetic diversity in glandless cotton germplasm resources by using agronomic traits and molecular markers[J]. Front. Agric. China, 2008, 2(3): 245-252.
 URL:  
https://academic.hep.com.cn/fag/EN/10.1007/s11703-008-0063-x
https://academic.hep.com.cn/fag/EN/Y2008/V2/I3/245
1 Abdalla A M, OUK Reddy, El-Zik K M, Pepper A E (2001). Genetic diversity and relationships of diploid and tetraploid cottonsrevealed using AFLP. Theor Appl Genet, 102: 222–229.
doi:10.1007/s001220051639
2 Afifi A, Bary A A, Kamel S A, Heikal I (1966). Bahtim 110, a new strain of Egyptian cotton free from gossypol. Cot Grow Rev, 43: 112–120
3 Beyene Y, Botha A M, Myburg A A (2005). A comparative study of molecularand morphological methods of describing genetic relationships in traditionalEthiopian highland maize. Afri J Biot, 4(7): 586–595
4 Bottger G T, Sheehan E T, Lukefahr M J (1964). Relation of gossypol content of cottonplant to insect resistance. J EconomicEntomo, 57(2): 283–285
5 Cai Y F, Zhang H, Zeng Y, Mo J C, Bao J K, Miao C, Bai J, Yan F, Chen F (2004). An optimized gossypol high-performance liquid chromatography assayand its application in evaluation of different gland genotypes ofcotton. J Biosci, 29: 67–71.
doi:10.1007/BF02702563
6 De Riek J, Calsyn E, Everaert I, van bockstaele E, De Loose M (2001). AFLPbased alternatives for the assessment of distinctness uniformity andstability of sugar beet varieties. TheorAppl Genet, 103: 1254–1265.
doi:10.1007/s001220100710
7 James Rohlf F (2000). NTSYSpc Numerical Taxonomy and Multivariate AnalysisSystem Version 2.1 User Guide.Department of Ecology and Evolution State University of New YorkStony Brook, NY, 11794–5245
8 Lee J A (1962). Genetical studies concerning the distribution of pigmentglands in the cotyledons and leaves of upland cotton. Genetics, 47: 131–142
9 Liu S, Cantrell R G, McCarty J C Jr, Stewart J McD (2000a). Simple sequence repeat-based assessment of genetic diversityin cotton race stock accessions. Crop Sci, 40: 1459–1469
10 Liu S, Saha S, Stelly D, Burr B, Cantrell R G (2000b). Chromosomal assignmentof microsatellite loci in cotton. J Hered, 91: 326–332.
doi:10.1093/jhered/91.4.326
11 Mantel N (1967). The detection of disease clustering and a generalizedregression approach. Cancer Res, 27: 209–220
12 McMichael S C (1954). Glandless boll in upland cotton and its use in the studyof natural crossing. J Agron, 46: 527–528
13 McMichael S C (1959). Hopi cotton: a source of cottonseed free of gossypolpigments. J Agron, 51: 630
14 McMichael S C (1960). Combined effects of the glandless genes gl2 and gl3 on pigment glandsin the cotton plant. J Agron, 52: 385–386
15 Murray J C (1965). A new locus for glanded atem in tetraploid cotton. J Heredity, 56: 42–46
16 Nei M, Li W H (1979). Mathematicalmodel for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci, 76: 5269–5273..
doi: 10.1073/pnas.76.10.5269
17 Ni J J, Colowit P M, Mackill D J (2002). Evaluation of genetic diversity inrice subspecies using microsatellite markers. Crop Sci, 42: 601–607
18 Paterson A H, Brubaker C L, Wendel J F (1993). A rapid method for extraction ofcotton (Gossypium spp.) genomicDNA suitable for RFLP or PCR analysis.Plant Mol Biol Rep, 11(2): 122–127.
doi:10.1007/BF02670470
19 Rana M K, Singh V P, Bhat K V (2005). Assessment of genetic diversity inupland cotton (Gossypium hirsutum L.) breeding lines by using amplified fragment length polymorphism(AFLP) markers and morphological characteristics.Genet Res and Crop Evol, 52: 989–997.
doi:10.1007/s10722‐003‐6113‐6
20 Reddy A S, Haisler R M, Yu Z H, Kohel R J (1997). AFLP mapping in cotton. Plant and AnimalGenome V Conference, 80
21 Reinisch A R, Dong J M, Brubaker C, Stelly D, Wendel J, Patterson A H (1994). A detailed RFLP map of cotton, Gossypium hirsutum × Gossypiumbarbadense: Chromosome organization and evolution in adisomic polyploid genome. Genetics, 138: 829–847
22 Roux J B (1960). The selection of cotton plants without gossypol. C R Acad Agr Fr, 46: 613–622 (in French)
23 Saha S, Karaca M, Jenkins J N, Zipf A E, Reddy U K, Kantety R V (2003). Simple sequence repeats as useful resources to studytranscribed genes of cotton. Euphytica, 130: 355–364.
doi:10.1023/A:1023077209170
24 Schondelmaier J, Steinrucken G, Jung C (1996). Integration of AFLP markers intoa linkage map of sugar beet (Beta vulgaris L.).PlantBreeding, 115: 231–237.
doi:10.1111/j.1439‐0523.1996.tb00909.x
25 Shappley Z W, Jenkins J N, Meredith W R, McCarty J C Jr (1998). An RFLP linkage map of upland cotton, Gossypium hirsutum L. Theor Appl Genet, 97: 756–761.
doi:10.1007/s001220050952
26 Tara S C, Bhat K V, Bharadwaj C, Tiwari S P, Chaudhury V K (2006). AFLPanalysis of genetic diversity in Indian soybean [Glycine max (L.) Merr.] varieties.Gene Res and Crop Evol, 53: 1069–1079.
doi:10.1007/s10722‐005‐0779‐x
27 van Esbroeck G A, Bowman D T (1998). Cottongermplasm diversity and its importance to cultivar development. J Cot Sci, 2: 121–129
28 Vos P, Hogers R, Bleeker M, Reijans M, Van de Lee T, Hornes M, Fijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995). AFLP: a new techniquefor DNA fingerprinting. Nucleic Acids Res, 23(21): 4407–4414.
doi:10.1093/nar/23.21.4407
29 Vroh Bi I, Maquet A, Bandoin J P, Jardin P du, Jacquemin J M, Mergeai G (1999). Breeding for “low gossypolseed and high gossypol plants” in upland cotton. Analysis oftri-species hybrids and backcross progenies using AFLPs and RFLPs.Theor Appl Genet, 99: 1233–1244.
doi:10.1007/s001220051329
30 Warburton M, Crossa J (2002). Dataanalysis in the CIMMYT applied biotechnology center for fingerprintingand genetic diversity studies. 2nd ed.www.cimmyt.org/english/docs/manual/protocols/dataAnalysis.pdf
31 Zhang J F, Lu Y, Adragna H, Hughs E (2005a). Genetic improvement of new Mexico Acala cotton germplasm and theirgenetic diversity. Crop Sci, 45: 2363–2373.
doi:10.2135/cropsci2005.0140
32 Zhang J F, Lu Y, Cantrell R G, Hughs E (2005b). Molecular marker diversity and field performance in commercial cottoncultivars evaluated in the southwestern USA. Crop Sci, 45: 1483–1490.
doi:10.2135/cropsci2004.0581
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed