Please wait a minute...
Frontiers of Agriculture in China

ISSN 1673-7334

ISSN 1673-744X(Online)

CN 11-5729/S

Front. Agric. China    2010, Vol. 4 Issue (1) : 109-115    https://doi.org/10.1007/s11703-009-0081-3
Research articles
Bioinformatics analysis of tyrosinase-related protein 1 gene ( TYRP1 ) from different species
Huiqin ZHENG,Xianglong LI,Rongyan ZHOU,Lanhui LI,Xiuli GUO,Jingfen KANG,Dongfeng LI,
College of Animal Science and Technology, Agricultural University of Hebei, Baoding 071001, China;
 Download: PDF(119 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract As one member of the tyrosinase-related family directly involved in the production of melanin, TYRP1 is involved in not only melanogenesis but also prevention of melanocyte death, stabilizing tyrosinase and helping determine the shape of melanosomes, etc. Multi-species sequence comparisons showed that there were two evolutionally conserved non-coding regions (from −1306 to −733 and from −642 to −515 according to AL138753) upstream of translational initiation sites, representing putative regulatory regions subject to subsequent experimental tests. Coding sequence length variation and genetic diversity analysis showed that Felis catus, Homo sapiens and Canis familiaris had more genetic diversities than the other species for TYRP1, especially Felis catus that could be a better choice for studying the TYRP1-associated genetic basis underlying the color diversity. As a 75kDa type-1 transmembrane glycoprotein, mature TYRP1 possesses about 17kDa modifying components, whose function predominantly depends on the existing glycosyl- groups and the Cu components. In addition, the mutated amino acids within species and the highly conserved amino acids among species were listed in our paper.
Keywords melanin      TYRP1      bioinformatics      
Issue Date: 05 March 2010
 Cite this article:   
Huiqin ZHENG,Rongyan ZHOU,Xianglong LI, et al. Bioinformatics analysis of tyrosinase-related protein 1 gene ( TYRP1 ) from different species[J]. Front. Agric. China, 2010, 4(1): 109-115.
 URL:  
https://academic.hep.com.cn/fag/EN/10.1007/s11703-009-0081-3
https://academic.hep.com.cn/fag/EN/Y2010/V4/I1/109
Alonso S, Izagirre N, Smith-Zubiaga I, Gardeazabal J, Díaz-Ramén J L, Díaz-Pórez J L, Zelenika D, Boyano M D, Smit N, de la Rúa C (2008). Complexsignatures of selection for the melanogenic loci TYR, TYRP1 and DCTin humans. BMC Evol Biol, 8: 74

doi: 10.1186/1471-2148-8-74
Bertolotto C, Buscà R, Abbe P, Bille K, Aberdam E, Ortonne J P, Ballotti R (1998). Differentcis-acting elements are involved in the regulation of TRP1 and TRP2promoter activities by cyclic AMP: pivotal role of M boxes (GTCATGTGCT)and of microphthalmia. Mol Cell Biol, 18(2): 694–702
Chen H, Salopek T G, Jimbow K (2001). The role of phosphoinositide 3-kinasein the sorting and transport of newly synthesized tyrosinase-relatedprotein-1 (TRP-1). J Investig DermatolSymp Proc, 6(1): 105–114

doi: 10.1046/j.0022-202x.2001.00012.x
Elnitski L, Hardison R C, Li J, Yang S, Kolbe D, Eswara P, O'Connor M J, Schwartz S, Miller W, Chiaromonte F (2003). Distinguishingregulatory DNA from neutral sites. GenomeRes, 13(1): 64–72
Gratten J, Beraldi D, Lowder B V, McRae A F, Visscher P M, Pemberton J M, Slate J (2007). Compelling evidence that a single nucleotide substitution in TYRP1is responsible for coat-colour polymorphism in a free-living populationof Soay sheep. Proc Biol Sci, 274(1610): 619–626

doi: 10.1098/rspb.2006.3762
Hardison R C (2000). Conserved noncoding sequences are reliable guides toregulatory elements. Trends Genet, 16: 369–372

doi: 10.1016/S0168-9525(00)02081-3
Hearing V J (1987). Mammalian monophenol monooxygenase (tyrosinase): purification,properties and reactions catalyzed. MethodsEnzymol, 142: 154–165

doi: 10.1016/S0076-6879(87)42024-7
Hulo N, Bairoch A, Bulliard V, Cerutti L, Cuche B A, de Castro E, Lachaize C, Langendijk-Genevaux P S, Sigrist C J (2008). The 20years of PROSITE. Nucleic Acids Res, 36(Databaseissue), D245–249
Ito S (2003). A chemist’s view of melanogenesis. Pigment Cell Res, 16: 230–236

doi: 10.1034/j.1600-0749.2003.00037.x
Jackman M P, Hajnal A, Lerch K (1991). Albino mutants of Streptomyces glaucescens tyrosinase. Biochem J, 274(Pt 3): 707–713
Jackson I J (1994). Molecular and developmental genetics of mouse coat color. Annu Rev Genet, 28: 189–217

doi: 10.1146/annurev.ge.28.120194.001201
Jiménez-Cervantes C, Solano F, Kobayashi T, Urabe K, Hearing V J, Lozano J A, García-Borrón J C (1994). A new enzymatic function in the melanogenic pathway. J Biol Chem, 269(27): 17993–18001
Kobayashi T, Hearing V J (2007). Directinteraction of tyrosinase with Tyrp1 to form heterodimeric complexes in vivo. J CellSci, 120: 4261–4268

doi: 10.1242/jcs.017913
Kobayashi T, Urabe K, Winder A, Jiménez-Cervantes C, Imokawa G, Brewington T, Solano F, García-Borrón JC, Hearing V J (1994). Tyrosinaserelated protein 1 (TRP1) functions as a DHICA oxidase in melanin biosynthesis. EMBO J, 13(24): 5818–5825
Kobayashi T, Vieira W D, Potterf B, Sakai C, Imokawa G, Hearing V J (1995). Modulation of melanogenic protein expression duringthe switch from eu-topheomelanogenesis. J Cell Sci, 108: 2301–2309
Levy C, Khaled M, Fisher D E (2006). MITF: master regulator of melanocytedevelopment and melanoma oncogene. TrendsMol Med, 12(9): 406–414

doi: 10.1016/j.molmed.2006.07.008
Lowings P, Yavuzer U, Goding C R (1992). Positive and negative elements regulatea melanocyte-specific promoter OCT-1. MolCell Biol, 12(8): 3653–3662
Lyons L A, Foe I T, Rah H C, Grahn R A (2005). Chocolate coated cats: TYRP1 mutations for brown color in domesticcats. Mamm Genome, 16(5): 356–366

doi: 10.1007/s00335-004-2455-4
Manga P, Kromberg J G, Box N F, Sturm R A, Jenkins T, Ramsay M (1997). Rufous oculocutaneous albinism in southern African Blacks is caused by mutations in theTYRP1 gene. Am J Hum Genet, 61(5): 1095–1101

doi: 10.1086/301603
Martínez-Morales J R, Dolez V, Rodrigo I, Zaccarini R, Leconte L, Bovolenta P, Saule S (2003). OTX2 activates the molecular network underlying retina pigment epitheliumdifferentiation. J Biol Chem, 278(24): 21721–21731

doi: 10.1074/jbc.M301708200
Mathews P M, Martinie J B, Fambrough D M (1992). The pathway and targeting signal fordelivery of the integral membrane glycoprotein LEP100 to lysosomes. J Cell Biol, 118(5): 1027–1040

doi: 10.1083/jcb.118.5.1027
Nadeau N J, Mundy N I, Gourichon D, Minvielle F (2007). Association of a single-nucleotide substitution in TYRP1with roux in Japanese quail (Coturnix japonica). Anim Genet, 38(6): 609–613
Nishimura N, Balch W E (1997). A di-acidicsignal required for selective export from the endoplasmic reticulum. Science, 277(5325): 556–558

doi: 10.1126/science.277.5325.556
Ovcharenko I, Loots G G, Hardison R C, Miller W, Stubbs L (2004). zPicture:dynamic alignment and visualization tool for analyzing conservationprofiles. Genome Res, 14: 472–477

doi: 10.1101/gr.2129504
Pagni M, Ioannidis V, Cerutti L, Zahn-Zabal M, Jongeneel C V, Hau J, Martin O, Kuznetsov D, Falquet L (2007). MyHits: improvements to an interactiveresource for analyzing protein sequences. Nucleic Acids Res, 35(Web Server issue): W433–437
Pennacchio L A, Rubin E M (2001). Genomicstrategies to identify mammalian regulatory sequences. Nat Rev Genet, 2: 100–109

doi: 10.1038/35052548
Prota G (1988). Some new aspects of eumelanin chemistry. Prog Clin Biol Res, 256: 101–124
Rad H H, Yamashita T, Jin H Y, Hirosaki K, Wakamatsu K, Ito S, Jimbow K (2004). Tyrosinase-related proteins suppress tyrosinase-mediatedcell death of melanocytes and melanoma cells. Exp Cell Res, 298(2): 317–328

doi: 10.1016/j.yexcr.2004.04.045
Sarangarajan R, Boissy R E (2001). Tyrp1and oculocutaneous albinism type 3. PigmentCell Res, 14(6): 437–444

doi: 10.1034/j.1600-0749.2001.140603.x
Schmidt-Küntzel A, Eizirik E, O'Brien S J, Menotti-Raymond M (2005). Tyrosinase and tyrosinase related protein 1 allelesspecify domestic cat coat color phenotypes of the albino and brownloci. J Hered, 96(4): 289–301

doi: 10.1093/jhered/esi066
Schmutz S M, Berryere T G, Goldfinch A D (2002). TYRP1 and MC1R genotypes and theireffects on coat color in dogs. Mamm Genome, 13(7): 380–387

doi: 10.1007/s00335-001-2147-2
Shibahara S, Tomita Y, Sakakura T, Nager C, Chaudhuri B, Müller R(1986). Cloning and expression of cDNA encodingmouse tyrosinase. Nucleic Acids Res, 14(6): 2413–2427

doi: 10.1093/nar/14.6.2413
Shibahara S, Tomita Y, Yoshizawa M, Shibata K, Tagami H (1992). Identificationof mutations in the pigment cell-specific gene located at the brownlocus in mouse. Pigment Cell Res, Suppl 2: 90–95
Sun J, Chen M, Xu J, Luo J (2005). Relationships among stop codon usage bias, its context, isochores,and gene expression level in various eukaryotes. J Mol Evol, 61(4): 437–444

doi: 10.1007/s00239-004-0277-3
Tajima F (1983). Evolutionary relationship of DNA sequences in finitepopulations. Genetics, 105: 437–460
Tate W P, Mansell J B, Mannering S A, Irvine J H, Major L L, Wilson D N (1999). UGA: a dual signal for ‘stop’ and for recodingin protein synthesis. Biochemistry (Mosc), 64(12): 1342–1353
Vijayasaradhi S, Xu Y, Bouchard B, Houghton A N (1995). Intracellular sorting and targeting of melanosomal membraneproteins: identification of signals for sorting of the human brownlocus protein, gp75. J Cell Biol, 130(4): 807–820

doi: 10.1083/jcb.130.4.807
Williams M A, Fukuda M (1990). Accumulationof membrane glycoproteins in lysosomes requires a tyrosine residueat a particular position in the cytoplasmic tail. J Cell Biol, 111(3): 955–966

doi: 10.1083/jcb.111.3.955
Xu Y, Bartido S, Setaluri V, Qin J, Yang G, Houghton A N (2001). Diverse roles of conserved asparagine-linked glycansites on tyrosinase family glycoproteins. Exp Cell Res, 267(1): 115–125

doi: 10.1006/excr.2001.5232
Xu Y, Vijayasaradhi S, Houghton A N (1998). The cytoplasmic tail of the mousebrown locus product determines intracellular stability and exportfrom the endoplasmic reticulum. J InvestDermatol, 110(4): 324–331

doi: 10.1046/j.1523-1747.1998.00163.x
Yavuzer U, Goding C R (1994). Melanocyte-specificgene expression: Role of repression and identification of a melanocyte-specificfactor, MSF. Mol Cell Biol, 14(5): 3494–3503
[1] ZHANG Xiaohui, XU Shangzhong, GAO Xue, REN Hongyan, CHEN Jinbao. Cloning and bioinformatics analysis of cDNA encoding cattle 4 gene[J]. Front. Agric. China, 2008, 2(4): 493-497.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed