1. Anhui Provincial Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China 2. College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
Porcine viral diarrhea is an acute and highly contagious enteric disease of pigs that causes huge economic losses worldwide. Porcine epidemic diarrhea virus (PEDV) and transmissible gastroenteritis virus (TGEV) are the main pathogens responsible for piglet viral diarrhea. However, currently there is no specific drug available for the effective treatment of viral diarrhea. Therefore, it is necessary to seek an effective method to diminish PEDV and TGEV infection rates. RNA interference has been applied successfully to inhibit the virus replication. It provides a potential strategy for breeding resistant pigs. In this study, four promoters and four short hairpin RNA (shRNA) vectors with LoxP sites at each end of the selectable marker genes were constructed to target PEDV and TGEV. These vectors were then transfected into porcine fetal fibroblasts, G418 resistant transfectants were confirmed by PCR and transgenic SCNT porcine blastocysts were obtained. These results have paved the way for future production of marker-free transgenic resistant to PEDV and TEGV pigs by SCNT.
JBi, S Zeng, SXiao, HChen, L Fang. Complete genome sequence of porcine epidemic diarrhea virus strain AJ1102 isolated from a suckling piglet with acute diarrhea in China. Journal of Virology, 2012, 86(19): 10910–10911 https://doi.org/10.1128/JVI.01919-12
pmid: 22966198
3
X MWang, B B Niu, H Yan, D SGao, XYang, L Chen, H TChang, JZhao, C Q Wang. Genetic properties of endemic Chinese porcine epidemic diarrhea virus strains isolated since 2010. Archives of Virology, 2013, 158(12): 2487–2494 https://doi.org/10.1007/s00705-013-1767-7
pmid: 23797760
4
JChen, X Liu, DShi, HShi, X Zhang, LFeng, YSong, Y Bi. Complete genome sequence of a porcine epidemic diarrhea virus variant. Journal of Virology, 2012, 86(6): 3408 https://doi.org/10.1128/JVI.07150-11
pmid: 22354946
5
RSun, R Cai, YChen, PLiang, DChen, C Song. Outbreak of porcine epidemic diarrhea in suckling piglets, China. Emerging Infectious Diseases, 2012, 18(1): 161–163 https://doi.org/10.3201/eid1801.111259
pmid: 22261231
6
CChae, O Kim, CChoi, KMin, W S Cho, J Kim, J HTai. Prevalence of porcine epidemic diarrhoea virus and transmissible gastroenteritis virus infection in Korean pigs. Veterinary Record, 2000, 147(21): 606–608 https://doi.org/10.1136/vr.147.21.606
pmid: 11110482
7
XRen, J Glende, JYin, CSchwegmann-Wessels, GHerrler. Importance of cholesterol for infection of cells by transmissible gastroenteritis virus. Virus Research, 2008, 137(2): 220–224 https://doi.org/10.1016/j.virusres.2008.07.023
pmid: 18727942
8
JLyall, R M Irvine, A Sherman, T JMcKinley, ANúñez, APurdie, LOuttrim, I HBrown, GRolleston-Smith, HSang, L Tiley. Suppression of avian influenza transmission in genetically modified chickens. Science, 2011, 331(6014): 223–226 https://doi.org/10.1126/science.1198020
pmid: 21233391
9
APfeifer, S Eigenbrod, SAl-Khadra, AHofmann, GMitteregger, MMoser, UBertsch, HKretzschmar. Lentivector-mediated RNAi efficiently suppresses prion protein and prolongs survival of scrapie-infected mice. Journal of Clinical Investigation, 2006, 116(12): 3204–3210 https://doi.org/10.1172/JCI29236
pmid: 17143329
10
M CGolding, C R Long, M A Carmell, G J Hannon, M E Westhusin. Suppression of prion protein in livestock by RNA interference. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(14): 5285–5290 https://doi.org/10.1073/pnas.0600813103
pmid: 16567624
11
JRamsoondar, T Vaught, SBall, MMendicino, JMonahan, PJobst, AVance, JDuncan, KWells, DAyares. Production of transgenic pigs that express porcine endogenous retrovirus small interfering RNAs. Xenotransplantation, 2009, 16(3): 164–180 PMID:19566656 https://doi.org/10.1111/j.1399-3089.2009.00525.x
12
HChi, M Shinohara, TYokomine, MSato, S Takao, MYoshida, KMiyoshi. Successful suppression of endogenous a-1,3-galactosyltransferase expression by RNA interference in pig embryos generated in vitro. Journal of Reproduction and Development, 2012, 58(1): 69–76 https://doi.org/10.1262/jrd.10-165M
pmid: 21997138
13
YBao, Y Guo, LZhang, ZZhao, N Li. Inhibition of porcine reproductive and respiratory syndrome virus replication by RNA interference in MARC-145 cells. Molecular Biology Reports, 2012, 39(3): 2515–2522 https://doi.org/10.1007/s11033-011-1003-z
pmid: 21667252
14
JLuo, J Du, SGao, GZhang, JSun, G Cong, JShao, TLin, H Chang. Lentviral-mediated RNAi to inhibit target gene expression of the porcine integrin av subunit, the FMDV receptor, and against FMDV infection in PK-15 cells. Virology Journal, 2011, 8(1): 428 https://doi.org/10.1186/1743-422X-8-428
pmid: 21899738
15
DTang, H Zhu, JWu, HChen, Y Zhang, XZhao, XChen, W Du, DWang, XLin. Silencing myostatin gene by RNAi in sheep embryos. Journal of Biotechnology, 2012, 158(3): 69–74 https://doi.org/10.1016/j.jbiotec.2012.01.008
pmid: 22285957
16
SHu, W Ni, WSai, HZi, J Qiao, PWang, JSheng, CChen. Knockdown of myostatin expression by RNAi enhances muscle growth in transgenic sheep. PLoS One, 2013, 8(3): e58521 https://doi.org/10.1371/journal.pone.0058521
pmid: 23526994
17
SHu, J Qiao, QFu, CChen, W Ni, SWujiafu, SMa, H Zhang, JSheng, PWang, D Wang, JHuang, LCao, H Ouyang. Transgenic shRNA pigs reduce susceptibility to foot and mouth disease virus infection. eLife, 2015, 4: e06951 https://doi.org/10.7554/eLife.06951
pmid: 26090904
18
KWang, W Lu, JChen, SXie, H Shi, HHsu, WYu, K Xu, CBian, W BFischer, WSchwarz, LFeng, B Sun. PEDV ORF3 encodes an ion channel protein and regulates virus production. FEBS Letters, 2012, 586(4): 384–391 https://doi.org/10.1016/j.febslet.2012.01.005
pmid: 22245155
19
JZhou, X Hua, LCui, JZhu, D Miao, YZou, XHe, W Su. Effective inhibition of porcine transmissible gastroenteritis virus replication in ST cells by shRNAs targeting RNA-dependent RNA polymerase gene. Antiviral Research, 2007, 74(1): 36–42 https://doi.org/10.1016/j.antiviral.2006.12.007
pmid: 17287033
20
JZhou, F Huang, XHua, LCui, W Zhang, YShen, YYan, P Chen, DDing, JMou, Q Chen, DLan, ZYang. Inhibition of porcine transmissible gastroenteritis virus (TGEV) replication in mini-pigs by shRNA. Virus Research, 2010, 149(1): 51–55 https://doi.org/10.1016/j.virusres.2009.12.012
pmid: 20080134
21
E MWesterhout, MOoms, M Vink, A TDas, BBerkhout. HIV-1 can escape from RNA interference by evolving an alternative structure in its RNA genome. Nucleic Acids Research, 2005, 33(2): 796–804 https://doi.org/10.1093/nar/gki220
pmid: 15687388
22
MKonishi, C H Wu, M Kaito, KHayashi, SWatanabe, YAdachi, G YWu. siRNA-resistance in treated HCV replicon cells is correlated with the development of specific HCV mutations. Journal of Viral Hepatitis, 2006, 13(11): 756–761 https://doi.org/10.1111/j.1365-2893.2006.00752.x
pmid: 17052275
23
JChen, Y Zhang, YZhang, CWei, X Liu, NZhou, QJia, Y Li, XZhang, YZhang. Construction of multiple shRNAs expression vector that inhibits FUT1 gene expression and production of the transgenic SCNT embryos in vitro. Molecular Biology Reports, 2013, 40(3): 2243–2252 https://doi.org/10.1007/s11033-012-2287-3
pmid: 23203408
24
JChen, X Liu, DShi, HShi, X Zhang, CLi, YChi, L Feng. Detection and molecular diversity of spike gene of porcine epidemic diarrhea virus in China. Viruses, 2013, 5(10): 2601–2613 https://doi.org/10.3390/v5102601
pmid: 24153062
25
Oter Brake, P Konstantinova, MCeylan, BBerkhout. Silencing of HIV-1 with RNA interference: a multiple shRNA approach. Molecular Therapy, 2006, 14(6): 883–892 https://doi.org/10.1016/j.ymthe.2006.07.007
pmid: 16959541
26
OBrake, K Hooft, Y PLiu, MCentlivre, KJasmijn von Eije, BBerkhout. Lentiviral vector design for multiple shRNA expression and durable HIV-1 inhibition. Molecular Therapy, 2008, 16(3): 557–564 https://doi.org/10.1038/sj.mt.6300382
pmid: 18180777
27
JJi, M Wernli, TKlimkait, PErb. Enhanced gene silencing by the application of multiple specific small interfering RNAs. FEBS Letters, 2003, 552(2-3): 247–252 https://doi.org/10.1016/S0014-5793(03)00893-7
pmid: 14527694
ZPenzes, J M Gonzalez, E Calvo, AIzeta, CSmerdou, AMéndez, C MSanchez, ISola, F Almazan, LEnjuanes. Complete genome sequence of transmissible gastroenteritis coronavirus PUR46-MAD clone and evolution of the purdue virus cluster. Virus Genes, 2001, 23(1): 105–118 https://doi.org/10.1023/A:1011147832586
pmid: 11556396
30
S JKim, J H Han, H M Kwon. Partial sequence of the spike glycoprotein gene of transmissible gastroenteritis viruses isolated in Korea. Veterinary Microbiology, 2003, 94(3): 195–206 https://doi.org/10.1016/S0378-1135(03)00101-9
pmid: 12814887
31
B JBosch, R van der Zee, C Ade Haan, P JRottier. The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex. Journal of Virology, 2003, 77(16): 8801–8811 https://doi.org/10.1128/JVI.77.16.8801-8811.2003
pmid: 12885899
32
SChang, J Bae, TKang, JKim, G H Chung, C W Lim, H Laude, MYang, Y SJang. Identification of the epitope region capable of inducing neutralizing antibodies against the porcine epidemic diarrhea virus. Molecules and Cells, 2002, 14(2): 295–299
pmid: 12442904
33
HLiu, M S Jan, C K Chou, P Chen, NKe. Is green fluorescent protein toxic to the living cells? Biochemical and Biophysical Research Communications, 1999, 260(3): 712–717 https://doi.org/10.1006/bbrc.1999.0954
pmid: 10403831
34
H EKrestel, A L Mihaljevic, D A Hoffman, A Schneider. Neuronal co-expression of EGFP and beta-galactosidase in mice causes neuropathology and premature death. Neurobiology of Disease, 2004, 17(2): 310–318 https://doi.org/10.1016/j.nbd.2004.05.012
pmid: 15474368
35
W YHuang, J Aramburu, P SDouglas, SIzumo. Transgenic expression of green fluorescence protein can cause dilated cardiomyopathy. Nature Medicine, 2000, 6(5): 482–483 https://doi.org/10.1038/74914
pmid: 10802676
36
D MDaigle, G A McKay, P R Thompson, G D Wright. Aminoglycoside antibiotic phosphotransferases are also serine protein kinases. Chemistry & Biology, 1999, 6(1): 11–18 https://doi.org/10.1016/S1074-5521(99)80016-7
pmid: 9889150
37
BMiki, A Abdeen, YManabe, PMacDonald. Selectable marker genes and unintended changes to the plant transcriptome. Plant Biotechnology Journal, 2009, 7(3): 211–218 https://doi.org/10.1111/j.1467-7652.2009.00400.x
pmid: 19261135