Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

邮发代号 80-906

Frontiers of Agricultural Science and Engineering  2020, Vol. 7 Issue (1): 75-80   https://doi.org/10.15302/J-FASE-2019294
  本期目录
Mitigating nitrous oxide emissions from agricultural soils by precision management
Robert M. REES1(), Juliette MAIRE1,2, Anna FLORENCE1, Nicholas COWAN2, Ute SKIBA2, Tony van der WEERDEN3, Xiaotang JU4
1. Scotland’s Rural College, Edinburgh, Scotland, EH9 3JG, UK
2. Centre for Ecology and Hydrology, Bush Estate, Penicuik, Scotland, EH26 OQB, UK
3. AgResearch, Invermay Agricultural Centre, Mosgiel 9053, New Zealand
4. College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
 全文: PDF(727 KB)   HTML
Abstract

Nitrous oxide (N2O) emissions make up a significant part of agricultural greenhouse gas emissions. There is an urgent need to identify new approaches to the mitigation of these emissions with emerging technology. In this short review four approaches to precision managements of agricultural systems are described based on examples of work being undertaken in the UK and New Zealand. They offer the opportunity for N2O mitigation without any reduction in productivity. These approaches depend upon new sensor technology, modeling and spatial information with which to make management decisions and interventions that can both improve agricultural productivity and environmental protection.

Key wordsdecision support systems    mitigation    nitrous oxide    precision farming
收稿日期: 2019-07-31      出版日期: 2020-03-02
Corresponding Author(s): Robert M. REES   
 引用本文:   
. [J]. Frontiers of Agricultural Science and Engineering, 2020, 7(1): 75-80.
Robert M. REES, Juliette MAIRE, Anna FLORENCE, Nicholas COWAN, Ute SKIBA, Tony van der WEERDEN, Xiaotang JU. Mitigating nitrous oxide emissions from agricultural soils by precision management. Front. Agr. Sci. Eng. , 2020, 7(1): 75-80.
 链接本文:  
https://academic.hep.com.cn/fase/CN/10.15302/J-FASE-2019294
https://academic.hep.com.cn/fase/CN/Y2020/V7/I1/75
Fig.1  
1 D Griggs, M Stafford-Smith, O Gaffney, J Rockström, M C Ohman, P Shyamsundar, W Steffen, G Glaser, N Kanie, I Noble. Sustainable development goals for people and planet. Nature, 2013, 495(7441): 305–307
https://doi.org/10.1038/495305a pmid: 23518546
2 IPCC. Climate Change 2013: the Physical Science basis. Contribution of working group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Stocker T F, Qin D, Plattner G K, Tignor M, Allen S K, Boschung J, Nauels A, Xia Y, Bex B, Midgley B M. eds. Cambridge and New York: Cambridge University Press, 2013, 1535
3 D S Reay, E A Davidson, K A Smith, P Smith, J M Melillo, F Dentener, P J Crutzen. Global agriculture and nitrous oxide emissions. Nature Climate Change, 2012, 2(6): 410–416
https://doi.org/10.1038/nclimate1458
4 D Fowler, C E Steadman, D Stevenson, M Coyle, R M Rees, U M Skiba, M A Sutton, J N Cape, A J Dore, M Vieno, D Simpson, S Zaehle, B D Stocker, M Rinaldi, M C Facchini, C R Flechard, E Nemitz, M Twigg, J W Erisman, K Butterbach-Bahl, J N Galloway. Effects of global change during the 21st century on the nitrogen cycle. Atmospheric Chemistry and Physics, 2015, 15(2): 1747–1868
5 K Butterbach-Bahl, E M Baggs, M Dannenmann, R Kiese, S Zechmeister-Boltenstern. Nitrous oxide emissions from soils: how well do we understand the processes and their controls? Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 2013, 368(1621): 20130122
https://doi.org/10.1098/rstb.2013.0122 pmid: 23713120
6 G Zhu, X Song, X Ju, J Zhang, C Müller, R Sylvester-Bradley, R E Thorman, I Bingham, R M Rees. Gross N transformation rates and related N2O emissions in Chinese and UK agricultural soils. Science of the Total Environment, 2019, 666: 176–186
https://doi.org/10.1016/j.scitotenv.2019.02.241 pmid: 30798228
7 R M Rees, J Augustin, G Alberti, B C Ball, P Boeckx, A Cantarel, S Castaldi, N Chirinda, B Chojnicki, M Giebels, H Gordon, B Grosz, L Horvath, R Juszczak, A K Klemedtsson, L Klemedtsson, S Medinets, A Machon, F Mapanda, J Nyamangara, J E Olesen, D S Reay, L Sanchez, A S Cobena, K A Smith, A Sowerby, M Sommer, J F Soussana, M Stenberg, C F E Topp, O Van Cleemput, A Vallejo, C A Watson, M Wuta. Nitrous oxide emissions from European agriculture—an analysis of variability and drivers of emissions from field experiments. Biogeosciences, 2013, 10(4): 2671–2682
https://doi.org/10.5194/bg-10-2671-2013
8 C A M de Klein, T J van der Weerden, J Luo, K C Cameron, H J Di. A review of plant options for mitigating nitrous oxide emissions from pasture-based systems. New Zealand Journal of Agricultural Science, 2019 [Published Online]. doi: 10.1080/00288233.2019.1614073
9 C Hénault, A Grossel, B Mary, M Roussel, J Leonard. Nitrous oxide emission by agricultural soils: a review of spatial and temporal variability for mitigation. Pedosphere, 2012, 22(4): 426–433
https://doi.org/10.1016/S1002-0160(12)60029-0
10 J Luo, J Wyatt, T J van der Weerden, S M Thomas, C A M de Klein, Y Li, M Rollo, S Lindsey, S F Ledgard, J Li, W Ding, S Qin, N Zhang, N Bolan, M B Kirkham, Z Bai, L Ma, X Zhang, H Wang, H Liu, G Rys. Chapter five—potential hotspot areas of nitrous oxide emissions from grazed pastoral dairy farm systems. Advances in Agronomy, 2017, 145: 205–268
https://doi.org/10.1016/bs.agron.2017.05.006
11 A Mosier, C Kroeze, C Nevison, O Oenema, S Seitzinger, O Van Cleemput. Closing the global N2O budget: nitrous oxide emissions through the agricultural nitrogen cycle. Nutrient Cycling in Agroecosystems, 1998, 52(2–3): 225–248
https://doi.org/10.1023/A:1009740530221
12 R M Rees, J A Baddeley, A Bhogal, B C Ball, D R Chadwick, M MacLeod, A Lilly, V A Pappa, R E Thorman, C A Watson, J R Williams. Nitrous oxide mitigation in UK agriculture. Soil Science and Plant Nutrition, 2013, 59(1): 3–15
https://doi.org/10.1080/00380768.2012.733869
13 N J Cowan, P Norman, D Famulari, P E Levy, D S Reay, U M Skiba. Spatial variability and hotspots of soil N2O fluxes from intensively grazed grassland. Biogeosciences, 2015, 12(5): 1585–1596
https://doi.org/10.5194/bg-12-1585-2015
14 B Liu, Å Frostegård, L R Bakken. Impaired reduction of N2O to N2 in acid soils is due to a posttranscriptional interference with the expression of nosZ. mBio, 2014, 5(3): e01383–14
https://doi.org/10.1128/mBio.01383-14 pmid: 24961695
15 Z Qu, J Wang, T Almøy, L R Bakken. Excessive use of nitrogen in Chinese agriculture results in high N2O/(N2O+N2) product ratio of denitrification, primarily due to acidification of the soils. Global Change Biology, 2014, 20(5): 1685–1698
https://doi.org/10.1111/gcb.12461 pmid: 24249526
16 P Dorsch. Mitigating Agricultural Greenhouse Gas Emissions by improved pH management of soils. FACCE ERA-GAS Monitoring and mitigation of Greenhouse gases from agri- and silvi-culture, 2017.
17 M J Bell, R M Rees, J M Cloy, C F Topp, A Bagnall, D R Chadwick. Nitrous oxide emissions from cattle excreta applied to a Scottish grassland: effects of soil and climatic conditions and a nitrification inhibitor. Science of the Total Environment, 2015, 508: 343–353
https://doi.org/10.1016/j.scitotenv.2014.12.008 pmid: 25497356
18 D R Chadwick, L M Cardenas, M S Dhanoa, N Donovan, T Misselbrook, J R Williams, R E Thorman, K L McGeough, C J Watson, M Bell, S G Anthony, R M Rees. The contribution of cattle urine and dung to nitrous oxide emissions: quantification of country specific emission factors and implications for national inventories. Science of the Total Environment, 2018, 635: 607–617
https://doi.org/10.1016/j.scitotenv.2018.04.152 pmid: 29679833
19 J Maire, S Gibson-Poole, N Cowan, D S Reay, K G Richards, U Skiba, R M Rees, G J Lanigan. Identifying urine patches on intensively managed grassland using aerial imagery captured from remotely piloted aircraft systems. Frontiers in Sustainable Food Systems, 2018, 2: 10
20 T J van der Weerden, A Manderson, F M Kelliher, C A M de Klein. Spatial and temporal nitrous oxide emissions from dairy cattle urine deposited onto grazed pastures across New Zealand based on soil water balance modelling. Agriculture, Ecosystems & Environment, 2014, 189: 92–100
https://doi.org/10.1016/j.agee.2014.03.018
21 J W van Groenigen, G L Velthof, F J E van der Bolt, A Vos, P J Kuikman. Seasonal variation in N2O emissions from urine patches: effects of urine concentration, soil compaction and dung. Plant and Soil, 2005, 273(1–2): 15–27
https://doi.org/10.1007/s11104-004-6261-2
22 S J Dennis, J L Moir, K C Cameron, G R Edwards, H J Di. Measuring excreta patch distribution in grazed pasture through low-cost image analysis. Grass and Forage Science, 2013, 68(3): 378–385
https://doi.org/10.1111/gfs.12000
23 G Bates, B F Quin, P Bishop. Low-cost detection and treatment of fresh cow urine patches. Palmerston North New Zealand: Massey University, 2015, Occasional Publication No. 28
24 T J van der Weerden, S Laurenson, I Vogeler, P C Beukes, S M Thomas, R M Rees, C F E Topp, G Lanigan, C A M de Klein. Mitigating nitrous oxide and manure-derived methane emissions by removing cows in response to wet soil conditions. Agricultural Systems, 2017, 156: 126–138
https://doi.org/10.1016/j.agsy.2017.06.010
25 M Diacono, P Rubino, F Montemurro. Precision nitrogen management of wheat. A review. Agronomy for Sustainable Development, 2013, 33(1): 219–241
https://doi.org/10.1007/s13593-012-0111-z
26 Z Q Chen, L Wang, Y L Bai, L P Yang, Y L Lu, H Wang, Z Y Wang. Spectral response of maize leaves and prediction of their nitrogen content. Spectroscopy and Spectral Analysis, 2013, 33(4): 1066–1070
pmid: 23841430
27 G J Clevers, L Kooistra, M M van den Brande. Using sentinel-2 data for retrieving LAI and leaf and canopy chlorophyll content of a potato crop. Remote Sensing, 2017, 9(5): 405
https://doi.org/10.3390/rs9050405
28 G J Clevers, A A Gitelson. Remote estimation of crop and grass chlorophyll and nitrogen content using red-edge bands on Sentinel-2 and-3. International Journal of Applied Earth Observation and Geoinformation, 2013, 23: 344–351
https://doi.org/10.1016/j.jag.2012.10.008
29 A F Bouwman, L J M Boumans, N H Batjes. Emissions of N2O and NO from fertilized fields: summary of available measurement data. Global Biogeochemical Cycles, 2002, 16(4): 6-1–6-13
https://doi.org/10.1029/2001GB001811
30 X Song, M Liu, X Ju, B Gao, F Su, X Chen, R M Rees. Nitrous oxide emissions increase exponentially when optimum nitrogen fertilizer rates are exceeded in the North China Plain. Environmental Science & Technology, 2018, 52(21): 12504–12513
https://doi.org/10.1021/acs.est.8b03931 pmid: 30351044
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed