Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

Front. Agr. Sci. Eng.    2017, Vol. 4 Issue (3) : 358-365     DOI: 10.15302/J-FASE-2017158
RESEARCH ARTICLE |
Conserved gene arrangement in the mitochondrial genomes of barklouse families Stenopsocidae and Psocidae
Xiaochen LIU1, Hu LI1,2(), Yao CAI1, Fan SONG1, John-James WILSON3, Wanzhi CAI1,2()
1. Department of Entomology, China Agricultural University, Beijing 100193, China
2. Key Laboratory of Pest Monitoring and Green Management, Ministry of Agriculture, Beijing 100193, China
3. International College Beijing, China Agricultural University, Beijing 100083, China
 Download: PDF(902 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Substantial variation in gene organization and arrangement has been reported for sequenced mitochondrial (mt) genomes from the suborders of the insect order Psocoptera. In this study we sequenced the complete mt genome of Stenopsocus immaculatus, the first representative of the family Stenopsocidae from the suborder Psocomorpha. Relative to the ancestral pattern, rearrangements of a protein-coding gene (nad3) and five tRNA genes (trnQ, trnC, trnN, trnS1, trnE) were found. This pattern was similar to that of two barklice from the family Psocidae, with the exception of the translocation of trnS1, trnE and trnI. Based on comparisons of pairwise breakpoint distances of gene rearrangements, gene number and chromosome number, it was concluded that mt genomes of Stenopsocidae and Psocidae share a relatively conserved pattern of gene rearrangements; mt genomes within the Psocomorpha have been generally stable over long evolutionary history; and mt gene rearrangement has been substantially faster in the booklice (suborder Troctomorpha) than in the barklice (suborders Trogiomorpha and Psocomorpha). It is speculated that the change of life history and persistence of unusual reproductive systems with maternal inheritance contributed to the contrasting rates in mt genome evolution between the barklice and booklice.

Keywords gene rearrangement      mitochondrial genome      Psocoptera      Stenopsocidae      TDRL model     
Corresponding Authors: Hu LI,Wanzhi CAI   
Just Accepted Date: 10 May 2017   Online First Date: 26 May 2017    Issue Date: 12 September 2017
 Cite this article:   
Xiaochen LIU,Hu LI,Yao CAI, et al. Conserved gene arrangement in the mitochondrial genomes of barklouse families Stenopsocidae and Psocidae[J]. Front. Agr. Sci. Eng. , 2017, 4(3): 358-365.
 URL:  
http://academic.hep.com.cn/fase/EN/10.15302/J-FASE-2017158
http://academic.hep.com.cn/fase/EN/Y2017/V4/I3/358
Order/SuborderFamilySpeciesAccession numberReference
Psocoptera
PsocomorphaPsocidaePsococerastis albimaculataJQ910986[19]
Longivalvus hyalospilusJQ910989[19]
StenopsocidaeStenopsocus immaculatusKX187004Present study
TrogiomorphaLepidopsocidaeUnidentified speciesNC_004816[24]
TroctomorphaLiposcelidaeL. decolorJX870621[23]
L. bostrychophilaJN645275-76[22]
L. paetaNC_025505-06[21]
L. entomophilaNC_025503-04[21]
L. sculptilisKX171073[18]
Hemiptera
HeteropteraPentatomidaeHalyomorpha halysNC_013272[31]
Tab.1  Species phylogenetically analyzed in this study
Fig.1  The mitochondrial genome of the narrow barklouse, Stenopsocus immaculatus. Arrows indicate the orientation of gene transcription. PCGs are shown as blue arrows, rRNA genes as purple arrows, tRNA genes as brown arrows and the control region as gray rectangle. Abbreviations of gene names are: atp6 and atp8 for ATP synthase subunits 6 and 8, cox1–3 for cytochrome oxidase subunits 13, cytb for Cytochrome b, nad1–6 and nad4L for NADH dehydrogenase subunits 16 and 4L, rrnL and rrnS for large and small rRNA subunits. tRNA genes are shown with their one-letter corresponding amino acids; the two tRNA genes for leucine and serine have different anticodons: L1 (TAG), L2 (TAA), S1 (TCT) and S2 (TGA). The GC content is plotted using a black sliding window, as the deviation from the average GC content of the entire sequence. GC-skew is plotted as the deviation from the average GC-skew of the entire sequence. The inner cycle indicates the location of genes in the mt genome.
Fig.2  The control region of the narrow barklouse Stenopsocus immaculatus. I and II indicate two mirror-repeat units.
FeatureT (U)CAGA%+ T%AT-skewGC-skew
Whole genome39.911.838.49.878.3- 0.019- 0.093
Control region42.87.541.97.784.8- 0.0110.015
Protein-coding genes43.611.532.112.875.7- 0.1510.053
First codon position35.010.735.718.470.90.0060.263
Second codon position46.018.321.314.367.4- 0.367- 0.123
Third codon position49.05.539.55.688.9- 0.1120.017
tRNA genes39.78.340.111.979.80.0050.175
rRNA genes43.56.739.010.882.5- 0.0550.234
Tab.2  Nucleotide composition of the Stenopsocus immaculatus mitochondrial genome
Fig.3  Comparison of mitochondrial gene arrangement between Psocomorpha (Stenopsocidae and Psocidae) and the hypothetical ancestor of insects. Abbreviations of gene names follow Fig. 1. Genes are transcribed from left to right except those underlined, which have the opposite transcriptional orientation. Orange frames show two active regions of gene rearrangements.
Fig.4  Inferred TDRL events that account for the mitochondrial gene rearrangements in the narrow barklouse Stenopsocus immaculatus. (a) Genes between CR and cox1; (b) genes between cox3 and nad4. Genes with crosses below were eliminated. Two longer non-coding sequences are highlighted in orange.
Fig.5  Phylogenetic relationships among major lineages of the Psocoptera inferred from mitochondrial genome sequences. Numbers close to the branching points are ML bootstrap support values (right) and Bayesian posterior probabilities (left) in percentages. Breakpoint distances are relative to the ancestral arranging pattern. Gene number in the bracket calculates gene without repetitions.
1 Boore J L. Animal mitochondrial genomes. Nucleic Acids Research, 1999, 27(8): 1767–1780
doi: 10.1093/nar/27.8.1767 pmid: 10101183
2 Cameron S L. Insect mitochondrial genomics: implications for evolution and phylogeny. Annual Review of Entomology, 2014, 59(1): 95–117
doi: 10.1146/annurev-ento-011613-162007 pmid: 24160435
3 Song F, Li H, Shao R, Shi A, Bai X, Zheng X, Heiss E, Cai W. Rearrangement of mitochondrial tRNA genes in flat bugs (Hemiptera: Aradidae). Scientific Reports, 2016, 6(1): 25725
doi: 10.1038/srep25725 pmid: 27180804
4 Gillett C P, Crampton-Platt A, Timmermans M J, Jordal B H, Emerson B C, Vogler A P. Bulk de novo mitogenome assembly from pooled total DNA elucidates the phylogeny of weevils (Coleoptera: Curculionoidea). Molecular Biology and Evolution, 2014, 31(8): 2223–2237
doi: 10.1093/molbev/msu154 pmid: 24803639
5 Li H, Shao R, Song N, Song F, Jiang P, Li Z, Cai W. Higher-level phylogeny of paraneopteran insects inferred from mitochondrial genome sequences. Scientific Reports, 2015, 5(1): 8527
doi: 10.1038/srep08527 pmid: 25704094
6 Song F, Li H, Jiang P, Zhou X, Liu J, Sun C, Vogler A P, Cai W. Capturing the phylogeny of Holometabola with mitochondrial genome data and Bayesian site-heterogeneous mixture models. Genome Biology and Evolution, 2016, 8(5): 1411–1426
doi: 10.1093/gbe/evw086 pmid: 27189999
7 Tang M, Hardman C J, Ji Y, Meng G, Liu S, Tan M, Yang S, Moss E D, Wang J, Yang C, Bruce C, Nevard T, Potts S G, Zhou X, Yu D W. High-throughput monitoring of wild bee diversity and abundance via mitogenomics. Methods in Ecology and Evolution, 2015, 6(9): 1034–1043
doi: 10.1111/2041-210X.12416 pmid: 27867467
8 Ma C, Yang P, Jiang F, Chapuis M P, Shali Y, Sword G A, Kang L. Mitochondrial genomes reveal the global phylogeography and dispersal routes of the migratory locust. Molecular Ecology, 2012, 21(17): 4344–4358
doi: 10.1111/j.1365-294X.2012.05684.x pmid: 22738353
9 Simon C, Buckley T R, Frati F, Stewart J B, Beckenbach A T. Incorporating molecular evolution into phylogenetic analysis, and a new compilation of conserved polymerase chain reaction primers for animal mitochondrial DNA. Annual Review of Ecology Evolution and Systematics, 2006, 37(1): 545–579
doi: 10.1146/annurev.ecolsys.37.091305.110018
10 Crampton-Platt A, Yu D W, Zhou X, Vogler A P. Mitochondrial metagenomics: letting the genes out of the bottle. GigaScience, 2016, 5(1): 15
doi: 10.1186/s13742-016-0120-y pmid: 27006764
11 Wolstenholme D R. Genetic novelties in mitochondrial genomes of multicellular animals. Current Opinion in Genetics & Development, 1992, 2(6): 918–925
doi: 10.1016/S0959-437X(05)80116-9 pmid: 1282405
12 McBride H M, Neuspiel M, Wasiak S. Mitochondria: more than just a powerhouse. Current Biology, 2006, 16(14): R551–R560
doi: 10.1016/j.cub.2006.06.054 pmid: 16860735
13 Clary D O, Wolstenholme D R. The mitochondrial DNA molecular of Drosophila yakuba: nucleotide sequence, gene organization, and genetic code. Journal of Molecular Evolution, 1985, 22(3): 252–271
doi: 10.1007/BF02099755 pmid: 3001325
14 Shao R, Campbell N J, Barker S C. Numerous gene rearrangements in the mitochondrial genome of the wallaby louse, Heterodoxus macropus (Phthiraptera). Molecular Biology and Evolution, 2001, 18(5): 858–865
doi: 10.1093/oxfordjournals.molbev.a003867 pmid: 11319269
15 Dowton M, Austin A D. Evolutionary dynamics of a mitochondrial rearrangement “hot spot” in the Hymenoptera. Molecular Biology and Evolution, 1999, 16(2): 298–309
doi: 10.1093/oxfordjournals.molbev.a026111 pmid: 10028295
16 Shao R, Barker S C. The highly rearranged mitochondrial genome of the plague thrips, Thrips imaginis (Insecta: Thysanoptera): convergence of two novel gene boundaries and an extraordinary arrangement of rRNA genes. Molecular Biology and Evolution, 2003, 20(3): 362–370
doi: 10.1093/molbev/msg045 pmid: 12644556
17 Shao R, Li H, Barker S C, Song S. The mitochondrial genome of the guanaco louse, Microthoracius praelongiceps: insights into the ancestral mitochondrial karyotype of sucking lice (Anoplura, Insecta). Genome Biology and Evolution, 2017, 9(2): 431–445
doi: 10.1093/gbe/evx007 pmid: 28164215
18 Shi Y, Chu Q, Wei D D, Qiu Y J, Shang F, Dou W, Wang J J. The mitochondrial genome of booklouse, Liposcelis sculptilis (Psocoptera: Liposcelididae) and the evolutionary timescale of Liposcelis. Scientific Reports, 2016, 6(1): 30660
doi: 10.1038/srep30660 pmid: 27470659
19 Li H, Shao R, Song F, Zhou X, Yang Q, Li Z, Cai W. Mitochondrial genomes of two Barklice, Psococerastis albimaculata and Longivalvus hyalospilus (Psocoptera: Psocomorpha): contrasting rates in mitochondrial gene rearrangement between major lineages of Psocodea. PLoS One, 2013, 8(4): e61685
doi: 10.1371/journal.pone.0061685 pmid: 23630609
20 Lienhard C, Smithers C N. Psocoptera: world catalogue and bibliography. Geneva: Muséum d’Histoire Naturelle Press, 2002.
21 Chen S C, Wei D D, Shao R, Shi J X, Dou W, Wang J J. Evolution of multipartite mitochondrial genomes in the booklice of the genus Liposcelis (Psocoptera). BMC Genomics, 2014, 15(1): 861
doi: 10.1186/1471-2164-15-861 pmid: 25282613
22 Wei D D, Shao R, Yuan M L, Dou W, Barker S C, Wang J J. The multipartite mitochondrial genome of Liposcelis bostrychophila: insights into the evolution of mitochondrial genomes in bilateral animals. PLoS One, 2012, 7(3): e33973
doi: 10.1371/journal.pone.0033973 pmid: 22479490
23 Chen S C, Wei D D, Shao R, Dou W, Wang J J. The complete mitochondrial genome of the booklouse, Liposcelis decolor: insights into gene arrangement and genome organization within the genus Liposcelis. PLoS One, 2014, 9(3): e91902
doi: 10.1371/journal.pone.0091902 pmid: 24637476
24 Shao R, Dowton M, Murrell A, Barker S C. Rates of gene rearrangement and nucleotide substitution are correlated in the mitochondrial genomes of insects. Molecular Biology and Evolution, 2003, 20(10): 1612–1619
doi: 10.1093/molbev/msg176 pmid: 12832626
25 Li H, Liu H, Shi A, Štys P, Zhou X, Cai W. The complete mitochondrial genome and novel gene arrangement of the unique-headed bug Stenopirates sp. (Hemiptera: Enicocephalidae). PLoS One, 2012, 7(1): e29419
doi: 10.1371/journal.pone.0029419 pmid: 22235294
26 Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 2012, 28(12): 1647–1649
doi: 10.1093/bioinformatics/bts199 pmid: 22543367
27 Lowe T M, Eddy S R. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Research, 1997, 25(5): 955–964
doi: 10.1093/nar/25.5.0955 pmid: 9023104
28 Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 2013, 30(12): 2725–2729
doi: 10.1093/molbev/mst197 pmid: 24132122
29 Librado P, Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 2009, 25(11): 1451–1452
doi: 10.1093/bioinformatics/btp187 pmid: 19346325
30 Bernt M, Merkle D, Ramsch K, Fritzsch G, Perseke M, Bernhard D, Schlegel M, Stadler P F, Middendorf M. CREx: inferring genomic rearrangements based on common intervals. Bioinformatics, 2007, 23(21): 2957–2958
doi: 10.1093/bioinformatics/btm468 pmid: 17895271
31 Lee W, Kang J, Jung C, Hoelmer K, Lee S H, Lee S. Complete mitochondrial genome of brown marmorated stink bug Halyomorpha halys (Hemiptera: Pentatomidae), and phylogenetic relationships of hemipteran suborders. Molecules and Cells, 2009, 28(3): 155–165
doi: 10.1007/s10059-009-0125-9 pmid: 19756390
32 Abascal F, Zardoya R, Telford M J. TranslatorX: multiple alignment of nucleotide sequences guided by amino acid translations. Nucleic Acids Research, 2010, 38(Web Server issue): W7–W13 
doi: 10.1093/nar/gkq291 pmid: 20435676
33 Katoh K, Standley D M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution, 2013, 30(4): 772–780
doi: 10.1093/molbev/mst010 pmid: 23329690
34 Ronquist F, Teslenko M, van der Mark P, Ayres D L, Darling A, Höhna S, Larget B, Liu L, Suchard M A, Huelsenbeck J P. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 2012, 61(3): 539–542
doi: 10.1093/sysbio/sys029 pmid: 22357727
35 Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics, 2006, 22(21): 2688–2690
doi: 10.1093/bioinformatics/btl446 pmid: 16928733
36 Posada D. jModelTest: phylogenetic model averaging. Molecular Biology and Evolution, 2008, 25(7): 1253–1256
doi: 10.1093/molbev/msn083 pmid: 18397919
37 Huelsenbeck J P, Ronquist F, Nielsen R, Bollback J P. Bayesian inference of phylogeny and its impact on evolutionary biology. Science, 2001, 294(5550): 2310–2314
doi: 10.1126/science.1065889 pmid: 11743192
38 Ojala D, Montoya J, Attardi G. tRNA punctuation model of RNA processing in human mitochondria. Nature, 1981, 290(5806): 470–474
doi: 10.1038/290470a0 pmid: 7219536
39 Wang G, Vasquez K M. Naturally occurring H-DNA-forming sequences are mutagenic in mammalian cells. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(37): 13448–13453
doi: 10.1073/pnas.0405116101 pmid: 15342911
40 Jain A, Wang G, Vasquez K M. DNA triple helices: biological consequences and therapeutic potential. Biochimie, 2008, 90(8): 1117–1130
doi: 10.1016/j.biochi.2008.02.011 pmid: 18331847
41 Zhang D X, Hewitt G M. Insect mitochondrial control region: a review of its structure, evolution and usefulness in evolutionary studies.  Biochemical  Systematics and  Ecology, 1997,  25(2): 99–120
doi: 10.1016/S0305-1978(96)00042-7
42 Yoshizawa K. Phylogeny and higher classification of suborder Psocomorpha (Insecta: Psocodea: ‘Psocoptera’). Zoological Journal of the Linnean Society, 2002, 136(3): 371–400
doi: 10.1046/j.1096-3642.2002.00036.x
[1] FASE-17158-OF-LXC_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed