Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

Postal Subscription Code 80-906

Front. Agr. Sci. Eng.    2019, Vol. 6 Issue (3) : 233-239    https://doi.org/10.15302/J-FASE-2019254
REVIEW
China-CIMMYT collaboration enhances wheat improvement in China
Zhonghu HE1,2(), Xianchun XIA1, Yong ZHANG1, Yan ZHANG1, Yonggui XIAO1, Xinmin CHEN1, Simin LI1, Yuanfeng HAO1, Awais RASHEED1,2, Zhiyong XIN1, Qiaosheng ZHUANG1, Ennian YANG3, Zheru FAN4, Jun YAN5, Ravi SINGH6, Hans-Joachim BRAUN6
1. Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
2. CIMMYT China Office, Beijing 100081, China
3. Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
4. Research Institute of Nuclear and Biotechnology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
5. Cotton Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Anyang 455000, China
6. International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600 Mexico, D.F., Mexico
 Download: PDF(139 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

China and CIMMYT have collaborated on wheat improvement for over 40 years and significant progress has been achieved in five aspects in China. A standardized protocol for testing Chinese noodle quality has been established with three selection criteria, i.e., gluten quality, starch viscosity and flour color are identified as being responsible for noodle quality. Genomic approaches have been used to develop and validate gene-specific markers, leading to the establishment of a KASP platform, and seven cultivars have been released through application of molecular marker technology. Methodology for breeding adult-plant resistance to yellow rust, leaf rust and powdery mildew, based on the pleiotropic effect of minor genes has been established, resulting in release of six cultivars. More than 330 cultivars derived from CIMMYT germplasm have been released and are now grown over 9% of the Chinese wheat production area. Additionally, physiological approaches have been used to characterize yield potential and develop high-efficiency phenotyping platforms. CIMMYT has also provided valuable training for Chinese scientists. Development of climate-resilient cultivars with application of new technology will be the priority for future collaboration.

Keywords adult-plant resistance      bread wheat      breeding      gene-specific marker      germplasm exchange      processing quality     
Corresponding Author(s): Zhonghu HE   
Just Accepted Date: 31 January 2019   Online First Date: 07 March 2019    Issue Date: 26 July 2019
 Cite this article:   
Zhonghu HE,Xianchun XIA,Yong ZHANG, et al. China-CIMMYT collaboration enhances wheat improvement in China[J]. Front. Agr. Sci. Eng. , 2019, 6(3): 233-239.
 URL:  
https://academic.hep.com.cn/fase/EN/10.15302/J-FASE-2019254
https://academic.hep.com.cn/fase/EN/Y2019/V6/I3/233
Gene Chromosome Marker Allele Phenotype
Phytoene synthase (Psy) 7A YP7A Psy-A1a/Psy-A1c High
Psy-A1b Low
7B YP7B Psy-B1a Medium
Psy-B1b Low
Phytoene desaturase (Pds) 4B YP4B-1 TaPds-B1b High
YP4B-2 TaPds-B1a Low
1BL.1RS 1B H20F/R Y High
N Low
Polyphenol oxidase (Ppo) 2A PPO18 Ppo-A1a
Ppo-A1b
High
Low
2B F-8 Ppo-B1a Low
Ppo-B1b High
2D PPO16 Ppo-D1a Low
PPO29 Ppo-D1b High
Lipoxygenase (Lox) 4B LOX16
LOX18
Lox-B1a
Lox-B1b
High
Low
Peroxidase (Pod) 3A Pod-3A1
Pod-3A2
Pod-3Aa
Pod-3Ab
Low
High
Tab.1  Genes and gene-specific markers associated with noodle color
Cultivar Cross Traits Release region and year
Zhongmai 996 Yumai 34/3*Lunxuan 987 IDQ, medium maturity Tianjin, 2014
Zhongmai 998 Yumai 34/3*Lunxuan 987 IDQ, medium maturity Tianjin, 2015
Zhongmai 1062 Yumai 34/3*Lunxuan 987 IDQ, medium maturity MOA, 2016
Jimai 23 Yumai 34/3*Jimai 22 IDQ, early maturity Shandong, 2016
Zhongmai 578 Zhongmai 255/Jimai 22 EBMQ, disease resistance Henan, 2018
Zhongmai 29 Jimai 22/Shilian 02-1 EBMQ Hebei, 2018
CA16015 Yumai 34/5*Zhongmai 175 EBMQ Advanced line
Tab.2  Cultivars developed from molecular marker program
Cultivar Cross Disease resistance Release region and year
Chuanmai 82 Singh 6/3*1231 YR, LR, PM Sichuan, 2017
Chuanmai 86 R411/1572 YR, LR, PM Sichuan, 2018
Zhongmai 578 Zhongmai 255/Jimai 22 YR, LR, PM Henan, 2018
Zhongmai 255 Yumai 49/Sunstate YR, LR, PM Henan, 2018
BFB 10 Lumai 21/Bainong 64 YR, LR, PM Advanced line
CA17114 Strampellia/5*Lunxuan 987 YR, LR, PM Advanced line
Tab.3  Germplasm with adult-plant resistance
Cultivar Cross Release region and year
Han 6172 Han 4032/Zhongyin 1 Northern Yellow and Huai River floodplains, 2001
Jinan 17 Linfen 5064/Lumai 13 Shandong, 1999
Jinmai 19 Linfen 5064/Lumai 13 Northern Yellow and Huai River floodplains, 2003
Emai 18 SKUA/865146/Emai 11 Hubei, 2002
Miannong 4 75-21-4/76-19//Miannong 1 Sichuan, 1993
Chuanmai 42 Syn-CD769/SW89-3243//Chuan 6415 South-western winter wheat region, 2003
Kefeng 3 Ke71F4-370-7/Nadores 63 Heilongjiang, 1982
Ningchun 4 Sonora 64/Hongtou North-western spring wheat region, 1981
Xinchun 2 Siete Cerros/Qichun 4 Xinjiang, 1984
Xinchuan 3 Siete Cerros/Qichun 4 Xinjiang, 1986
Xinchun 6 Zhong 7906/Xinchun 2“S” Xinjiang, 1993
Tab.4  Important cultivars in China derived from CIMMYT germplasm
1 M A Lantican, H J Braun, T S Payne, R P Singh, K Sonder, M Baum, M van Ginkel, O Erenstein. Impacts of International Wheat Improvement Research, 1994–2014, Mexico, D.F.: CIMMYT, 2016
2 Z H He, Q S Zhuang, S H Cheng, Z W Yu, Z D Zhao, X Liu. Wheat production and technology improvement in China. Journal of Agriculture, 2018, 8(1): 99–106 (in Chinese)
3 Z H He, X C Xia, Y Zhang. Breeding noodle wheat in China. In: Gary G H ed, Asian Noodles, Science, Technology, and Processing, New Jersey: Wiley, A John Wiley & Sons, 2010, 1–23
4 Y L Ye, Y Zhang, J Yan, Y Zhang, Z H He, S D Huang, K J Quail. Effects of flour extraction rate, added water and salt on color and texture of Chinese white noodles. Cereal Chemistry, 2009, 86(4): 477–485
https://doi.org/10.1094/CCHEM-86-4-0477
5 Y Zhang, T Nagamine, Z H He, X X Ge, H Yoshida, R J Pena. Variation in quality traits in common wheat as related to Chinese fresh white noodle quality. Euphytica, 2005, 141: 113–120
https://doi.org/10.1007/s10681-005-6335-0
6 J J Liu, Z H He, Z D Zhao, R J Pena, S Rajaram. Wheat quality traits and quality parameters of cooked dry white Chinese noodles. Euphytica, 2003, 131(2): 147–154
https://doi.org/10.1023/A:1023972032592
7 Z H He, J Yang, Y Zhang, K J Quail, R J Pena. Pan bread and dry white Chinese noodle quality in Chinese winter wheats. Euphytica, 2004, 139: 257–267
https://doi.org/10.1007/s10681-004-3283-z
8 Y Liu, Z He, R Appels, X Xia. Functional markers in wheat: current status and future prospects. Theoretical and Applied Genetics, 2012, 125(1): 1–10
https://doi.org/10.1007/s00122-012-1829-3 pmid: 22366867
9 X Y He, Z H He, L P Zhang, D J Sun, C F Morris, E P Fuerst, X C Xia. Allelic variation of polyphenol oxidase (PPO) genes located on chromosomes 2A and 2D and development of functional markers for the PPO genes in common wheat. Theoretical and Applied Genetics, 2007, 115(1): 47–58
https://doi.org/10.1007/s00122-007-0539-8 pmid: 17426955
10 L Liu, T M Ikeda, G Branlard, R J Peña, W J Rogers, S E Lerner, M A Kolman, X Xia, L Wang, W Ma, R Appels, H Yoshida, A L Wang, Y Yan, Z He. Comparison of low molecular weight glutenin subunits identified by SDS-PAGE, 2-DE, MALDI-TOF-MS and PCR in common wheat. BMC Plant Biology, 2010, 10(1): 124
https://doi.org/10.1186/1471-2229-10-124 pmid: 20573275
11 A Rasheed, W Wen, F Gao, S Zhai, H Jin, J Liu, Q Guo, Y Zhang, S Dreisigacker, X Xia, Z He. Development and validation of KASP assays for genes underpinning key economic traits in bread wheat. Theoretical and Applied Genetics, 2016, 129(10): 1843–1860
https://doi.org/10.1007/s00122-016-2743-x pmid: 27306516
12 Z L Wang, L H Li, Z H He, X Y Duan, Y L Zhou, X M Chen, M Lillemo, R P Singh, H Wang, X C Xia. Seedling and adult plant resistance to powdery mildew in Chinese bread wheat cultivars and lines. Plant Disease, 2005, 89(5): 457–463
https://doi.org/10.1094/PD-89-0457
13 Z F Li, X C Xia, X C Zhou, Y C Niu, Z H He, Y Zhang, G Q Li, A M Wan, D S Wang, X M Chen, Q L Lu, R P Singh. Seedling and slow rusting resistance to stripe rust in Chinese common wheats. Plant Disease, 2006, 90(10): 1302–1312
https://doi.org/10.1094/PD-90-1302
14 Z F Li, X C Xia, Z H He, L J Zhang, X Li, H Y Wang, Q F Meng, W X Yang, G Q Li, D Q Liu. Seedling and slow rusting resistance to leaf rust in Chinese wheat cultivars. Plant Disease, 2010, 94(1): 45–53
https://doi.org/10.1094/PDIS-94-1-0045
15 M Lillemo, B Asalf, R P Singh, J Huerta-Espino, X M Chen, Z H He, A Bjørnstad. The adult plant rust resistance loci Lr34/Yr18 and Lr46/Yr29 are important determinants of partial resistance to powdery mildew in bread wheat line Saar. Theoretical and Applied Genetics, 2008, 116(8): 1155–1166
https://doi.org/10.1007/s00122-008-0743-1 pmid: 18347772
16 Y Lu, C Lan, S Liang, X Zhou, D Liu, G Zhou, Q Lu, J Jing, M Wang, X Xia, Z He. QTL mapping for adult-plant resistance to stripe rust in Italian common wheat cultivars Libellula and Strampelli. Theoretical and Applied Genetics, 2009, 119(8): 1349–1359
https://doi.org/10.1007/s00122-009-1139-6 pmid: 19756474
17 C Lan, S Liang, Z Wang, J Yan, Y Zhang, X Xia, Z He. Quantitative trait loci mapping for adult-plant resistance to powdery mildew in Chinese wheat cultivar Bainong 64. Phytopathology, 2009, 99(10): 1121–1126
https://doi.org/10.1094/PHYTO-99-10-1121 pmid: 19740024
18 C X Lan, X W Ni, J Yan, Y Zhang, C X Xia, X M Chen, Z H He. Quantitative trait loci mapping of adult-plant resistance to powdery mildew in Chinese wheat cultivar Lumai 21. Molecular Breeding, 2010, 25(4): 615–622
https://doi.org/10.1007/s11032-009-9358-8
19 Y Ren, Z Li, Z He, L Wu, B Bai, C Lan, C Wang, G Zhou, H Zhu, X Xia. QTL mapping of adult-plant resistances to stripe rust and leaf rust in Chinese wheat cultivar Bainong 64. Theoretical and Applied Genetics, 2012, 125(6): 1253–1262
https://doi.org/10.1007/s00122-012-1910-y pmid: 22806327
20 Y Ren, L Liu, Z H He, L Wu, B Bai, X C Xia. QTL mapping of adult-plant resistance to stripe rust in a ‘Lumai 21 × Jingshuang 16’ wheat population. Plant Breeding, 2015, 134(5): 501–507
https://doi.org/10.1111/pbr.12290
21 G M Rosewarne, S A Herrera-Foessel, R P Singh, J Huerta-Espino, C X Lan, Z H He. Quantitative trait loci of stripe rust resistance in wheat. Theoretical and Applied Genetics, 2013, 126(10): 2427–2449
https://doi.org/10.1007/s00122-013-2159-9 pmid: 23955314
22 Z F Li, C X Lan, Z H He, P S Ravi, G M Rosewarne, X M Chen, X C Xia. Overview and application of QTL for adult plant resistance to leaf rust and powdery mildew in wheat. Crop Science, 2014, 54(5): 1907–1925
https://doi.org/10.2135/cropsci2014.02.0162
23 J D Liu, E N Yang, Y G Xiao, X M Chen, L Wu, B Bai, Z F Li, G M Rosewarne, X C Xia, Z H He. Development, field and molecular characterization of advanced lines with pleiotropic adult plant resistance in common wheat. Acta Agronomica Sinica, 2015, 41(10): 1472–1480 (in Chinese)
https://doi.org/10.3724/SP.J.1006.2015.01472
24 B Bai, Z H He, M A Asad, C X Lan, Y Zhang, X C Xia, J Yan, X M Chen, C S Wang. Pyramiding adult-plant powdery mildew resistance QTLs in bread wheat. Crop & Pasture Science, 2012, 63(7): 606–611
https://doi.org/10.1071/CP12183
25 Y Zhang, Z H He, A M Zhang, M van Ginkel, G Y Ye. Pattern analysis on grain yield performance of Chinese and CIMMYT spring wheat cultivars sown in China and CIMMYT. Euphytica, 2006, 147(3): 409–420
https://doi.org/10.1007/s10681-005-9038-7
26 Z H He, X C Xia. CIMMYT Wheat Introduction and Utilization in China. Beijing: China Agriculture Press, 2016 (in Chinese)
27 Y Zhang, S Z Li, Z L Wu, W X Yang, Y X Yu, X C Xia, Z H He. Contribution of CIMMYT wheat germplasm to genetic improvement of grain yield in spring wheat of Sichuan, Yunnan, Gansu, and Xinjiang Provinces. Acta Agronomica Sinica, 2011, 37(10): 1752–1762 (in Chinese)
https://doi.org/10.3724/SP.J.1006.2011.01752
28 W Yang, D Liu, J Li, L Zhang, H Wei, X Hu, Y Zheng, Z He, Y Zou. Synthetic hexaploid wheat and its utilization for wheat genetic improvement in China. Journal of Genetics and Genomics, 2009, 36(9): 539–546
https://doi.org/10.1016/S1673-8527(08)60145-9 pmid: 19782955
29 J Huang, C Y Xiang, Y Wang. The Impact of CIMMYT Wheat Germplasm on Wheat Productivity in China. Mexico, D.F.: CGIAR Research Program on Wheat, 2015
30 Y Zhou, Z H He, X X Sui, X C Xia, X K Zhang, G S Zhang. Genetic improvement of grain yield and associated traits in the northern China winter wheat region from 1960 to 2000. Crop Science, 2007, 47(1): 245–253
https://doi.org/10.2135/cropsci2006.03.0175
31 F M Gao, D Y Ma, G H Yin, A Rasheed, Y Dong, Y G Xiao, X C Xia, X X Wu, Z H He. Genetic progress in grain yield and physiological traits in Chinese wheat cultivars of Southern Yellow and Huai Valley since 1950. Crop Science, 2017, 57(2): 760–773
https://doi.org/10.2135/cropsci2016.05.0362
32 M A Hassan, M J Yang, A Rasheed, X L Jin, X C Xia, Y G Xiao, Z H He. Time-series multispectral indices from unmanned aerial vehicle imagery reveal senescence rate in bread wheat. Remote Sensing, 2018, 10(6): 809
https://doi.org/10.3390/rs10060809
33 J Huang, C Xiang, Y Wang. Hidden Value of CGIAR Training Programs for National Research Capacity: A Case Study of CIMMYT’s Impact on China’s Wheat R&D Productivity. Mexico, D.F.: CGIAR Research Program on Wheat, 2016
[1] Odette Denise WEEDON, Maria Renate FINCKH. RESPONSE OF WHEAT COMPOSITE CROSS POPULATIONS TO DISEASE AND CLIMATE VARIATION OVER 13 GENERATIONS[J]. Front. Agr. Sci. Eng. , 2021, 8(3): 400-415.
[2] Kunling CHEN, Caixia GAO. Genome-edited crops: how to move them from laboratory to market[J]. Front. Agr. Sci. Eng. , 2020, 7(2): 181-187.
[3] Mengke YUAN, Yuanpeng GAO, Jing HAN, Teng WU, Jingcheng ZHANG, Yongke WEI, Yong ZHANG. The development and application of genome editing technology in ruminants: a review[J]. Front. Agr. Sci. Eng. , 2020, 7(2): 171-180.
[4] Zachariah MCLEAN, Björn OBACK, Götz LAIBLE. Embryo-mediated genome editing for accelerated genetic improvement of livestock[J]. Front. Agr. Sci. Eng. , 2020, 7(2): 148-160.
[5] Dongdong LI, Meng WANG, Xianyan KUANG, Wenxin LIU. Genetic study and molecular breeding for high phosphorus use efficiency in maize[J]. Front. Agr. Sci. Eng. , 2019, 6(4): 366-379.
[6] Wujun MA, Zitong YU, Maoyun SHE, Yun ZHAO, Shahidul ISLAM. Wheat gluten protein and its impacts on wheat processing quality[J]. Front. Agr. Sci. Eng. , 2019, 6(3): 279-287.
[7] Carlos GUZMÁN, Karim AMMAR, Velu GOVINDAN, Ravi SINGH. Genetic improvement of wheat grain quality at CIMMYT[J]. Front. Agr. Sci. Eng. , 2019, 6(3): 265-272.
[8] Hongxiang MA, Xu ZHANG, Jinbao YAO, Shunhe CHENG. Breeding for the resistance to Fusarium head blight of wheat in China[J]. Front. Agr. Sci. Eng. , 2019, 6(3): 251-264.
[9] Alexey MORGOUNOV, Fatih OZDEMIR, Mesut KESER, Beyhan AKIN, Thomas PAYNE, Hans-Joachim BRAUN. International Winter Wheat Improvement Program: history, activities, impact and future[J]. Front. Agr. Sci. Eng. , 2019, 6(3): 240-250.
[10] Jianwen CHEN, Kaiyuan PAN, Zhen CHEN, Biao DING, Dandan SONG, Wenbin BAO, Yunhai ZHANG. Construction of multiple shRNA vectors targeting PEDV and TGEV and production of transgenic SCNT porcine embryos in vitro[J]. Front. Agr. Sci. Eng. , 2019, 6(1): 66-72.
[11] Muhammad ZEESHAN, Waheed ARSHAD, Muhammad Imran KHAN, Shiraz ALI, Ali NAWAZ, Amina BATOOL, Muhammad TARIQ, Muhammad Imran AKRAM, Muhammad Amjad ALI. Breeding for pre-harvest sprouting resistance in bread wheat under rainfed conditions[J]. Front. Agr. Sci. Eng. , 2018, 5(2): 253-261.
[12] Chuanping YANG. Research progress on genetic improvement of Betula platyphylla Suk.[J]. Front. Agr. Sci. Eng. , 2017, 4(4): 391-401.
[13] Wenteng XU, Songlin CHEN. Genomics and genetic breeding in aquatic animals: progress and prospects[J]. Front. Agr. Sci. Eng. , 2017, 4(3): 305-318.
[14] Huimin KANG, Lei ZHOU, Jianfeng LIU. Statistical considerations for genomic selection[J]. Front. Agr. Sci. Eng. , 2017, 4(3): 268-278.
[15] Yueyi CHEN,Xinsheng GAO,Xiaofei ZHANG,Weimin TIAN. Relationship between the number of tapping-induced secondary laticifer lines and rubber yield among Hevea germplasm[J]. Front. Agr. Sci. Eng. , 2016, 3(4): 363-367.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed