Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

Postal Subscription Code 80-906

Front. Agr. Sci. Eng.    2019, Vol. 6 Issue (3) : 240-250    https://doi.org/10.15302/J-FASE-2019261
REVIEW
International Winter Wheat Improvement Program: history, activities, impact and future
Alexey MORGOUNOV1(), Fatih OZDEMIR2, Mesut KESER3, Beyhan AKIN1, Thomas PAYNE4, Hans-Joachim BRAUN4
1. International Maize and Wheat Improvement Center (CIMMYT), Ankara 06511, Turkey
2. Bahri Dagdas International Agricultural Research Institute, Konya 42001, Turkey
3. International Center for Agricultural Research in Dry Areas (ICARDA), Ankara 06511, Turkey
4. International Maize and Wheat Improvement Center (CIMMYT), Texcoco 56100, Mexico
 Download: PDF(179 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

International Winter Wheat Improvement Program (IWWIP) was established in 1986 between the Government of Turkey and CIMMYT with three main objectives: (1) develop winter/facultative germplasm for Central and West Asia, (2) facilitate global winter wheat germplasm exchange, and (3) training wheat scientists. ICARDA joined the program in 1991 making it a three-way partnership that continues to work effectively. The germplasm developed by IWWIP as well as the winter wheat cultivars and lines received from global cooperators are assembled into international nurseries. These nurseries are offered annually to public and private entities (IWWIP website) and distributed to more than 100 cooperators in all continents. IWWIP impact has primarily been in new winter wheat cultivars combining broad adaptation, high yield potential, drought tolerance and disease resistance. A total of 93 IWWIP cultivars have been released in 11 countries occupying annually an estimated 2.5–3.0 Mha. IWWIP cooperation with researchers in Turkey, Central and West Asia and several US universities has resulted in a number of publications reviewed in this paper. Important IWWIP impacts include national inventories of wheat landraces in Turkey, Tajikistan and Uzbekistan, their collection, characterization, evaluation and utilization.

Keywords biotic and abiotic stresses      breeding      methodology      winter wheat     
Corresponding Author(s): Alexey MORGOUNOV   
Just Accepted Date: 24 April 2019   Online First Date: 28 May 2019    Issue Date: 26 July 2019
 Cite this article:   
Alexey MORGOUNOV,Fatih OZDEMIR,Mesut KESER, et al. International Winter Wheat Improvement Program: history, activities, impact and future[J]. Front. Agr. Sci. Eng. , 2019, 6(3): 240-250.
 URL:  
https://academic.hep.com.cn/fase/EN/10.15302/J-FASE-2019261
https://academic.hep.com.cn/fase/EN/Y2019/V6/I3/240
Country Area/Mha Yield/(t·ha1) Production/Mt Import or export*/Mt
1996−2000 2013−2017 % change 1996−2000 2013−2017 % change 1996−2000 2013−2017 % change
Afghanistan 2.08 2.35 +12.7 1.13 2.05 +81.5 2.36 4.81 +103.6 −0.26
Armenia 0.11 0.10 −5.0 1.95 3.02 +55.3 0.20 0.31 +50.7 −0.31
Azerbaijan 0.48 0.60 +25.2 1.85 2.81 +51.9 0.89 1.69 +90.1 −1.29
Georgia 0.12 0.04 −61.6 1.46 2.11 +45.1 0.17 0.10 −44.3 −0.55
Iran 5.73 6.16 +7.5 1.71 1.95 +14.5 9.75 12.00 +23.0 −4.21
Kazakhstan 9.95 12.20? +22.1 0.85 1.16 +37.1 8.34 14.10 +69.0 +4.33
Kyrgyzstan 0.49 0.30 −38.3 2.29 2.26 −1.5 1.12 0.67 −39.9 −0.33
Tajikistan 0.33 0.30 −8.9 1.12 3.04 +171.4 0.37 0.91 +144.7 −0.82
Turkey 9.26 7.74 −16.4 2.10 2.73 +30.3 19.40 21.10 +8.9 −4.48
Turkmenistan 0.58 1.39 +142.0 1.92 1.00 −47.8 1.12 1.36 +21.5 −0.61
Uzbekistan 1.40 1.44 +3.1 2.45 4.69 +91.3 3.43 6.76 +97.2 −1.17
Tab.1  Key wheat production statistics for countries of Central and West Asia in 1996–2017
Region Number and proportion of the breeding programs considering IWWIP germplasm as
Not useful Useful Very useful
Number ?% Number ?% Number %
Central and West Asia 1 5 8 42 8 42
Europe 2 9 16 73 2 9
America 0 0 7 87 1 13
All 3 6 31 63 11 22
Region Number and proportion of the breeding programs selecting the following % of IWWIP germplasm from international nurseries
<10% 10%–30% >30%
Number ?% Number ?% Number %
Central and West Asia 4 21 13 68 1 5
Europe 13 59 6 27 1 5
America 7 87 1 13 0 0
All 24 49 20 41 2 4
Tab.2  Results of 2012 IWWIP survey of collaborating programs
Country Number of released cultivars
Pre-1995 1996–2000 2001–2005 2006–2010 2011–2015 2016+ Total
Afghanistan 1 2 1 0 1 1 6
Armenia 0 0 0 4 ? ? 4
Azerbaijan 0 0 0 1 2 2 5
Georgia 0 0 1 2 2 2 7
Iran 0 1 1 0 3 1 7
Kazakhstan 0 0 0 1 1 0 2
Kyrgyzstan 0 0 4 2 3 2 9
Tajikistan 0 0 0 3 3 4 10
Turkey 2 6 13 4 3 7 35
Turkmenistan 0 0 1 0 0 2 3
Uzbekistan 0 0 1 0 0 4 5
Total 3 9 22 17 17 25 93
Tab.3  The number of cultivars released in Central and West Asia originating from IWWIP
1 S Rajaram, M van Ginkel, R A Fischer. CIMMYT’s wheat breeding mega-environments (ME). In: Proceedings of the 8th International Wheat Genetic Symposium, Beijing, China. ResearchGate, 1994, 1101–1106
2 H J Braun, G Atlin, T Payne. Multi-location testing as a tool to identify plant response to global climate change. In: Reynolds M ed. Climate Change and Crop Production. CABI, 2010, 115–138
3 S R Kuhr, V A Johnson, C J Peterson, P J Mattern. Trends in winter wheat performance as measured in international trials. Crop Science, 1985, 25(6): 1045–1049
https://doi.org/10.2135/cropsci1985.0011183X002500060036x
4 A Morgounov, H A Tufan, R Sharma, B Akin, A Bagci, H J Braun, Y Kaya, M Keser, T S Payne, K Sonder, R McIntosh. Global incidence of wheat rusts and powdery mildew during 1969–2010 and durability of resistance of winter wheat variety Bezostaya 1. European Journal of Plant Pathology, 2012, 132(3): 323–340
https://doi.org/10.1007/s10658-011-9879-y
5 B Akin, X M Chen, A Morgunov, N Zencirci, A Wan, M Wang. High-temperature adult-plant resistance to stripe rust in facultative winter wheat. Crop & Pasture Science, 2016, 67(10): 1064–1074
https://doi.org/10.1071/CP16073
6 B Akın, S Yüce, R Singh, H J Braun, N Zencirci, A Morgunov, S Dreisigacker. Leaf rust (Puccinia triticina) resistance genes determination using race differentials and molecular markers in winter-facultative wheat (Triticum aestivum L.). Agricultural Science Research Journal, 2013, 3(6): 167–177
7 L X Yu, S Liu, J A Anderson, R P Singh, Y Jin, J Dubcovsky, G Brown-Guidera, S Bhavani, A Morgounov, Z He, J Huerta-Espino, M E Sorrells. Haplotype diversity of stem rust resistance loci in uncharacterized wheat lines. Molecular Breeding, 2010, 26(4): 667–680
https://doi.org/10.1007/s11032-010-9403-7
8 L X Yu, A Morgounov, R Wanyera, M Keser, S K Singh, M Sorrells. Identification of Ug99 stem rust resistance loci in winter wheat germplasm using genome-wide association analysis. Theoretical and Applied Genetics, 2012, 125(4): 749–758
https://doi.org/10.1007/s00122-012-1867-x pmid: 22534791
9 A Morgounov, B Akin, L Demir, L Keser, A Kokhmetova, S Martynov, S Orhan, F Özdemir, I Özseven, Z Sapakhova, M Yessimbekova. Yield gain due to fungicide application in varieties of winter wheat (Triticum aestivum) resistant and susceptible to leaf rust. Crop & Pasture Science, 2015, 66(7): 649–659
https://doi.org/10.1071/CP14158
10 A Morgounov, S Haun, L Lang, S Martynov, K Sonder. Climate change at winter wheat breeding sites in Central Asia, Eastern Europe, and USA, and implications for breeding. Euphytica, 2013, 194(2): 277–292
https://doi.org/10.1007/s10681-013-0968-1
11 A I Morgounov, N Gummadov, S Belen, Y Kaya, M Keser, J Mursalova. Association of digital photo parameters and NDVI with winter wheat grain yield in variable environments. Turkish Journal of Agriculture and Forestry, 2014, 38: 624–632
https://doi.org/10.3906/tar-1312-90
12 N Gummadov, M Keser, A Akin, M Cakmak, Z Mert, S Taner, I Ozturk, A Topal, S Yazar, A Morgounov. Genetic gains in wheat in Turkey: winter wheat for irrigated conditions. Crop Journal, 2015, 3(6): 507–516
https://doi.org/10.1016/j.cj.2015.07.007
13 M Keser, N Gummadov, B Akin, S Belen, Z Mert, S Taner, A Topal, S Yazar, A Morgounov, R C Sharma, F Ozdemir. Genetic gains in wheat in Turkey: winter wheat for dryland conditions. Crop Journal, 2017, 5(6): 533–540
https://doi.org/10.1016/j.cj.2017.04.004
14 A A Dababat, M Imren, G Erginbas-Orakci, S Ashrafi, E Yavuzaslanoglu, H Toktay, S R Pariyar, I H Elekcioglu, A I Morgounov, T Mekete. The importance and management strategies of cereal cyst nematodes, Heterodera spp., in Turkey. Euphytica, 2015, 202(2): 173–188
https://doi.org/10.1007/s10681-014-1269-z
15 A A Dababat, G Erginbas-Orakci, H Toktay, M Imren, B Akin, H J Braun, S Dreisigacker, I H Elekcioglu, A I Morgounov. Resistance of winter wheat to Heterodera filipjevi in Turkey. Turkish Journal of Agriculture and Forestry, 2014, 38: 180–186
https://doi.org/10.3906/tar-1305-47
16 S R Pariyar, A A Dababat, W Sannemann, G Erginbas-Orakci, A Elashry, S Siddique, A Morgounov, J Leon, F M W Grundler. Genome-wide association study in wheat identifies resistance to Cereal Cyst Nematode Heterodera filipjevi. Phytopathology, 2016, 106(10): 1128–1138
https://doi.org/10.1094/PHYTO-02-16-0054-FI pmid: 27552283
17 G Erginbaş-Orakci, A Morgounov, A Dababat. Determination of resistance in winter wheat genotypes to the dryland root rots caused by Fusarium culmorum in Turkey. International Journal of Agriculture and Wildlife Science, 2018, 4(2): 193–202
https://doi.org/10.24180/ijaws.414501
18 R C Sharma, A I Morgounov, B Akin, L Bespalova, L Lang, M Litvinenko, P Mustatea, I Ozturk, A Postolatiy, S Rajaram, H J Braun. Winter wheat eastern European regional yield trial: identification of superior genotypes and characterization of environments. Crop Science, 2014, 54(6): 2469–2480
https://doi.org/10.2135/cropsci2014.01.0028
19 C T Beil, H K Manmathan, V A Anderson, A Morgounov, S D Haley. Population structure and genetic diversity analysis of germplasm from the winter wheat eastern European regional yield trial (WWEERYT). Crop Science, 2017, 57(2): 812–820
https://doi.org/10.2135/cropsci2016.08.0639
20 C T Beil, V A Anderson, A Morgounov, S D Haley. Genomic selection for winter survival ability among a diverse collection of facultative and winter wheat genotypes. Molecular Breeding, 2019, 39(2): 29
https://doi.org/10.1007/s11032-018-0925-8
21 A Mazid, M Keser, K N Amegbeto, A I Morgounov, A Bagci, K Peker, M Akin, M Kucukcongar, M Kan, A Semerci, S Karabak, A Altikat, S Yaktubay. Measuring the impact of agricultural research: the case of new wheat varieties in Turkey. Experimental Agriculture, 2015, 51(2): 161–178
https://doi.org/10.1017/S0014479714000209
22 R C Sharma, S Rajaram, S Alikulov, Z Ziyaev, S Hazratkulova, M Khodarahami, S M Nazeri, S Belen, Z Khalikulov, M Mosaad, Y Kaya, M Keser, Z Eshonova, A Kokhmetova, M G Ahmedov, M R Kamali. Improved winter wheat genotypes for Central and West Asia. Euphytica, 2013, 190(1): 19–31
https://doi.org/10.1007/s10681-012-0732-y
23 W Tadesse, A I Morgounov, H J Braun, B Akin, M Keser, Y Kaya, R C Sharma, S Rajaram, M Singh, M Baum, M Van Ginkel. Breeding progress for yield in winter wheat genotypes targeted to irrigated environments of the CWANA region. Euphytica, 2013, 194(2): 177–185
https://doi.org/10.1007/s10681-013-0903-5
24 I Cakmak, A Yilmaz, M Kalayci, H Ekiz, B Torun, B Ereno, H J Braun. Zinc deficiency as a critical problem in wheat production in Central Anatolia. Plant and Soil, 1996, 180(2): 165–172
https://doi.org/10.1007/BF00015299
25 I Cakmak, U B Kutman. Agronomic biofortification of cereals with zinc: a review. European Journal of Soil Science, 2018, 69(1): 172–180
https://doi.org/10.1111/ejss.12437
26 M Kan, M Kucukcongar, M Keser, M Morgounov, H Muminjanov, H Özdemir, C Qualset. Wheat landraces in farmers’ fields in Turkey: national survey, collection and conservation, 2009–2015: Ankara, Turkey. FAO, 2015
27 A I Morgounov, M Keser, M Kan, M Küçükçongar, F Özdemir, N Gummadov, H Muminjanov, E Zuev, C O Qualset. Wheat landraces currently grown in Turkey: distribution, diversity, and use. Crop Science, 2016, 56(6): 3112–3124
https://doi.org/10.2135/cropsci2016.03.0192
28 D Sehgal, S Dreisigacker, S Belen, Ü Küçüközdemir, Z Mert, E Özer, A Morgounov. Mining centuries old in-situ conserved Turkish wheat landraces for grain yield and stripe rust resistance genes. Frontiers in Genetics, 2016, 7: 201
https://doi.org/10.3389/fgene.2016.00201 pmid: 27917192
29 B Husenov, M Otambekova, A Morgounov, H Muminjanov. Wheat landraces in farmers’ fields in Tajikistan: national survey, collection, and conservation, 2013–2015: Ankara, Turkey. FAO, 2015
30 S Baboev, A Morgounov, H Muminjanov. Wheat landraces in farmers’ fields in Uzbekistan: national survey, collection, and conservation, 2010–2015: Ankara, Turkey. FAO, 2015
31 A Morgounov, A Abugalieva, K Akan, B Akın, S Baenziger, M Bhatta, A A Dababat, L Demir, Y Dutbayev, M El Bouhssini, G Erginbaş-Orakci, M Kishii, M Keser, E Koç, A Kurespek, A Mujeeb-Kazi, A Yorgancılar, F Özdemir, I Özturk, T Payne, G Qadimaliyeva, V Shamanin, K Subasi, G Suleymanova, E Yakişir, Y Zelenskiy. High-yielding winter synthetic hexaploid wheats resistant to multiple diseases and pests. Plant Genetic Resources, 2018, 16(3): 273–278
https://doi.org/10.1017/S147926211700017X
32 M Bhatta, A Morgounov, V Belamkar, P S Baenziger. Genome-wide association study reveals novel genomic regions for grain yield and yield-related traits in drought-stressed synthetic hexaploid wheat. International Journal of Molecular Sciences, 2018, 19(10): 3011
https://doi.org/10.3390/ijms19103011 pmid: 30279375
33 M Bhatta, A Morgounov, V Belamkar, A Yorgancılar, P S Baenziger. Genome-wide association study reveals favorable alleles associated with common bunt resistance in synthetic hexaploid wheat. Euphytica, 2018, 214: 200
https://doi.org/10.1007/s10681-018-2282-4
34 M Bhatta, P S Baenziger, B M Waters, R Poudel, V Belamkar, J Poland, A Morgounov. Genome-wide association study reveals novel genomic regions associated with 10 grain minerals in synthetic hexaploid wheat. International Journal of Molecular Sciences, 2018, 19(10): 3237
https://doi.org/10.3390/ijms19103237 pmid: 30347689
35 G Gadimaliyeva, N Aminov, A Jahangirov, H Hamidov, A Abugalieva, V Shamanin, A Morgounov. Productivity and disease resistance of primary hexaploid synthetic wheat lines and their crosses with bread wheat. Cereal Research Communications, 2018, 46(2): 355–364
https://doi.org/10.1556/0806.46.2018.16
[1] FASE-19261-OF-MA_suppl_1 Download
[1] Odette Denise WEEDON, Maria Renate FINCKH. RESPONSE OF WHEAT COMPOSITE CROSS POPULATIONS TO DISEASE AND CLIMATE VARIATION OVER 13 GENERATIONS[J]. Front. Agr. Sci. Eng. , 2021, 8(3): 400-415.
[2] Kai WANG, Qunfeng ZHOU, Tianze YAN, Shilong XU, Longyi ZHAO, Weicheng WANG, Zhigang JIN, Peng QIN, Chenjian FU, Liangbi CHEN, Yuanzhu YANG. Characterization of grain cadmium concentration in indica hybrid rice[J]. Front. Agr. Sci. Eng. , 2020, 7(4): 523-529.
[3] Kunling CHEN, Caixia GAO. Genome-edited crops: how to move them from laboratory to market[J]. Front. Agr. Sci. Eng. , 2020, 7(2): 181-187.
[4] Mengke YUAN, Yuanpeng GAO, Jing HAN, Teng WU, Jingcheng ZHANG, Yongke WEI, Yong ZHANG. The development and application of genome editing technology in ruminants: a review[J]. Front. Agr. Sci. Eng. , 2020, 7(2): 171-180.
[5] Zachariah MCLEAN, Björn OBACK, Götz LAIBLE. Embryo-mediated genome editing for accelerated genetic improvement of livestock[J]. Front. Agr. Sci. Eng. , 2020, 7(2): 148-160.
[6] Dongdong LI, Meng WANG, Xianyan KUANG, Wenxin LIU. Genetic study and molecular breeding for high phosphorus use efficiency in maize[J]. Front. Agr. Sci. Eng. , 2019, 6(4): 366-379.
[7] Carlos GUZMÁN, Karim AMMAR, Velu GOVINDAN, Ravi SINGH. Genetic improvement of wheat grain quality at CIMMYT[J]. Front. Agr. Sci. Eng. , 2019, 6(3): 265-272.
[8] Hongxiang MA, Xu ZHANG, Jinbao YAO, Shunhe CHENG. Breeding for the resistance to Fusarium head blight of wheat in China[J]. Front. Agr. Sci. Eng. , 2019, 6(3): 251-264.
[9] Zhonghu HE, Xianchun XIA, Yong ZHANG, Yan ZHANG, Yonggui XIAO, Xinmin CHEN, Simin LI, Yuanfeng HAO, Awais RASHEED, Zhiyong XIN, Qiaosheng ZHUANG, Ennian YANG, Zheru FAN, Jun YAN, Ravi SINGH, Hans-Joachim BRAUN. China-CIMMYT collaboration enhances wheat improvement in China[J]. Front. Agr. Sci. Eng. , 2019, 6(3): 233-239.
[10] Jianwen CHEN, Kaiyuan PAN, Zhen CHEN, Biao DING, Dandan SONG, Wenbin BAO, Yunhai ZHANG. Construction of multiple shRNA vectors targeting PEDV and TGEV and production of transgenic SCNT porcine embryos in vitro[J]. Front. Agr. Sci. Eng. , 2019, 6(1): 66-72.
[11] Chuanping YANG. Research progress on genetic improvement of Betula platyphylla Suk.[J]. Front. Agr. Sci. Eng. , 2017, 4(4): 391-401.
[12] Wenteng XU, Songlin CHEN. Genomics and genetic breeding in aquatic animals: progress and prospects[J]. Front. Agr. Sci. Eng. , 2017, 4(3): 305-318.
[13] Huimin KANG, Lei ZHOU, Jianfeng LIU. Statistical considerations for genomic selection[J]. Front. Agr. Sci. Eng. , 2017, 4(3): 268-278.
[14] Yueyi CHEN,Xinsheng GAO,Xiaofei ZHANG,Weimin TIAN. Relationship between the number of tapping-induced secondary laticifer lines and rubber yield among Hevea germplasm[J]. Front. Agr. Sci. Eng. , 2016, 3(4): 363-367.
[15] Wei HUA,Jing LIU,Hanzhong WANG. Molecular regulation and genetic improvement of seed oil content in Brassica napus L.[J]. Front. Agr. Sci. Eng. , 2016, 3(3): 186-194.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed