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Abstract Crop planting structure optimization is a
significant way to increase agricultural economic benefits
and improve agricultural water management. The com-
plexities of fluctuating stream conditions, varying eco-
nomic profits, and uncertainties and errors in estimated
modeling parameters, as well as the complexities among
economic, social, natural resources and environmental
aspects, have led to the necessity of developing optimiza-
tion models for crop planting structure which consider
uncertainty and multi-objectives elements. In this study,
three single-objective programming models under uncer-
tainty for crop planting structure optimization were
developed, including an interval linear programming
model, an inexact fuzzy chance-constrained programming
(IFCCP) model and an inexact fuzzy linear programming
(IFLP) model. Each of the three models takes grayness into
account. Moreover, the IFCCP model considers fuzzy
uncertainty of parameters/variables and stochastic char-
acteristics of constraints, while the IFLP model takes into
account the fuzzy uncertainty of both constraints and
objective functions. To satisfy the sustainable development
of crop planting structure planning, a fuzzy-optimization-
theory-based fuzzy linear multi-objective programming
model was developed, which is capable of reflecting both
uncertainties and multi-objective. In addition, a multi-
objective fractional programming model for crop structure
optimization was also developed to quantitatively express
the multi-objective in one optimization model with the
numerator representing maximum economic benefits and
the denominator representing minimum crop planting area
allocation. These models better reflect actual situations,
considering the uncertainties and multi-objectives of crop
planting structure optimization systems. The five models
developed were then applied to a real case study in Minqin

County, north-west China. The advantages, the applicable
conditions and the solution methods of each model are
expounded. Detailed analysis of results of each model and
their comparisons demonstrate the feasibility and applic-
ability of the models developed, therefore decision makers
can choose the appropriate model when making decisions.

Keywords crop planting structure, optimization model,
uncertainty, multi-objective

1 Introduction

Crop planting structure optimization is important for both
irrigation water management and agricultural manage-
ment[1], and is increasingly significant in agricultural water
management. Crop planting structure optimization allo-
cates the optimum planting proportion to each crop to
achieve goals of increasing agricultural economic benefit
and decreasing irrigation water use[2]. Crop planting
structure optimization can promote irrigation water
resources management and water using efficiency in
order to solve the problems of water shortage and make
the development of agriculture sustainable. Accordingly, it
is of significance to optimize crop planting structure
especially for the arid and semi-arid areas facing serious
water shortage problems.
Previously, a number of optimization methods have been

developed for crop planting structure planning, ranging
from single-objective optimization to multiple objectives
optimization, because crop structure planning involves
multiple conflicting objectives such as economic, social
and environmental benefits[3–8]. Linear programming (LP)
has been a widely used optimization method, but the
parameters, constraints and objectives of most LP models
for crop planting structure are deterministic. Actually, crop
planting structure planning systems are complex and there
are many uncertainties in some parameters and their
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interrelationships, constraints and objectives, e.g., the
spatial and temporal variations of stream conditions and
irrigation quota, the fluctuations of system benefit
coefficients, the grayness of system objective and
constrains, and the errors in estimated modeling para-
meters[9]. Fuzzy mathematics programming (FMP) has
been proved to be an effective and efficient tool to solve the
problems where some parameters, constraints or objectives
involved cannot be defined precisely[10–13]. However, crop
planting structure optimization involves more than one
kind of uncertainty factor, since it involves a complex
system with the interaction of multiple uncertainties, e.g.,
fuzziness and grayness, fuzziness and randomness.
Unfortunately, this has received little attention in the
literature. Although there have been a number of studies
about the multi-objective optimization for crop planting
structure to maintain sustainable development to meet
specific objectives, there is a degree of subjectivity in these
studies in terms of the solution process. Therefore, it is
important for decision makers to consider how to
quantitatively express multiple objectives with less sub-
jectivity about uncertainty, and how to fully consider
gradual changes in selection and recognition of weights of
indexes, especially when combining with uncertainty
models.
This paper reports the development of five models for

crop planting structure optimization to express multiple
objectives and uncertainties from different perspectives,
including three single-objective and two multi-objective
programming models. Model 2, an inexact fuzzy chance-
constrained programming (IFCCP) model, and Model 3,
an inexact fuzzy linear programming (IFLP) model; both
consider fuzziness in their optimization, and are based on
the framework of Model 1, an interval linear programming
(ILP) model, and fuzzy mathematics programming (FMP).
The difference between Models 2 and 3 is in their
fuzziness, i.e., the fuzziness in Model 2 is in parameters,
while the fuzziness in Model 3 is in constraints and
objective functions. Model 4, a fuzzy-optimization-theory-
based fuzzy linear multi-objective programming (FOTB-
FLMP) model considers the multiple objectives of
maximizing economic and social benefits based on the
fuzzy optimization theory (FOT), while Model 5, a multi-
objective fractional programming (MFP) model, considers
the multiple objectives of maximizing economic benefits
and minimizing crop planting area. Additionally, Model 4
takes into account the fuzziness of constraints and
objective functions. The five models developed were
applied in crop planting structure optimization in Minqin
County, north-west China, to demonstrate their feasibility
and applicability. Detailed analysis and the comparison of
the results of the five models are given. Decision makers
can choose the appropriate models based on actual
situations, which will help to optimize crop planting
structure more effectively in the wake of uncertainty.

2 Model formulation

2.1 Preliminaries

2.1.1 Interval linear programming

Interval linear programming (ILP) was first developed by
Huang et al.[14] to deal with the uncertainties caused by
incomplete information in constraints or objective func-
tions, without knowing the distribution information of
parameters. The standard ILP model can be described as
follows:

min   f � ¼ C�X�

A�X�£B�

X�³0

8>><
>>: (1)

where A� 2 fR�gm�n
, B� 2 fR�gm�1

, C� 2 fR�g1�n
,

X� 2 fR�gn�1
; fR�g denotes interval number sets;

a�ij 2 A�, x�j 2 X�, c�j 2 C�; f � denotes objective
function; assuming the numbers of positive number and
negative number in c�j ðj ¼ 1,2,:::,nÞ are k1 and k2,

respectively, so c�j <0 ðj ¼ k1 þ 1,k1 þ 2,:::,nÞ and
k1 þ k2 ¼ n. Thus, the source model can be converted to
two submodels:
Lower bound submodel

min f – ¼
Xk1
j¼i

c –j x
–
j þ

Xn
j¼k1þ1

c –j x
þ
j

Xk1
j¼1

jaijj�signða�ij Þx –j þ
Xn

j¼k1þ1

jaijj – signða –
ij Þxþj £bþi ,    8i

x�j ³0, j ¼ 1,2,:::,n

8>>>>>>><
>>>>>>>:

(2)

By solving the above model, f –
opt, x

–
joptðj ¼ 1,2,:::,k1Þ

and xþjoptðj ¼ k1 þ 1,k1 þ 2,:::,nÞ can be obtained.
Upper bound submodel

min f þ ¼
Xk1
j¼i

cþj xþj þ
Xn

j¼k1þ1

cþj x –j

Xk1
j¼1

jaijj – signða –
ij Þxþj þ

Xn
j¼k1þ1

jaijjþsignðaþij Þx –j £b –
i ,    8i

xþj £x –jopt, 8i ¼ 1,2,:::,k1

x –j £xþjopt, j ¼ k1 þ 1,k1 þ 2,:::,n

x –j ³0, j ¼ 1,2,:::,n

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(3)

Similarly, f þopt, x
þ
joptðj ¼ 1,2,:::,k1Þ and x –joptðj ¼ k1 þ

1,k1 þ 2,:::,nÞ can be obtained. The final results are x�jopt ¼
½x –jopt, xþjopt�,    8j and f �jopt ¼ ½f –

jopt, f
þ
jopt�.
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2.1.2 Fuzzy linear programming

Fuzzy linear programming (FLP) blurs the constraints and
objective function of LP to deal with fuzzy uncertain-
ties[15]. FLP models are uncertain and it is necessary to
transform the FLP model into a deterministic one during
the solutions. The FLP can be converted to ordinary LP by
introducing a membership function. Generally, the FLP
model[16] can be described as:

max F ¼
XJ
j

cjaj ~³Z0

XJ
j¼1

wijaj ~£bi      8i
aj³0

i ¼ 1,2,:::,m, j ¼ 1,2,:::,n

8>>>>>>>>><
>>>>>>>>>:

(4)

where F is the objective function; Z0 is the optimal
solution of the corresponding ordinary LP, i.e., Eq. 4
without considering the fuzzy relation inequalities; a ¼
fa1,a2,:::,anj a1,a2,:::,an 2 Rn, a1,a2,:::,an³0g are deci-
sion variables; cj 2 fRgn�1, wij 2 fRgm�n, and bi 2
fRgm�1 are parameters; ~Di and ~F are the fuzzy sets of a
corresponding to constraint i and objective function
respectively; di and d0 are the scaling values of constraint
i and objective function, with d0 equals the difference
between the optimal value of ordinary LP under the

conditions of
XJ

j¼1
wijaj£

~
bi and Z0; the membership

function expression of constraint i and the corresponding
diagram (Fig. 1) can be expressed as:

μ~Di
ða1,a2,:::,anÞ

¼

1
Xn

j
wijaj£bi

1 –  
Xn
j

wijaj – bj

 !
=dj bi<

Xn

j
wijaj£bi þ di

0
Xn

j
wijaj > bi þ di

                           

    

                        

8>>>>>><
>>>>>>:

(5)

μ~F ða1,a2,:::,anÞ

¼

1
Xn

j
cjaj > Z0

Xn
j¼1

cjaj – Z0

 !
=d0 Z0 – d0<

Xn

j
cjaj£Z0

0
Xn

j
cjaj£Z0 – d0

8>>>>>><
>>>>>>:

(6)

~S denotes fuzzy solution sets and ~S ¼ ~D1 \ ~D2 \ :::~Dm

\~F; and according to the maximum membership grade (l)
principle, the membership function of a1,a2,:::,an is:

μ~S a1,a2,:::,anð Þ
¼ _

a1,a2,:::,an 2A
^μ~Di

a1,a2,:::,anð Þ ^ μ~Fða1,a2,:::,anÞ
n o

¼ _
a1,a2,:::,an 2A

ljμ~Di
a1,a2,:::,anð Þ³l,μ~Fða1,a2,:::,an

n �
³l,

i ¼ 1,2,:::,m, l³0 g (7)

Hence, the FLP model can be converted to ordinary LP
as:

max  l

μ~Di
ða1,a2,:::,anÞ³l

μ~F ða1,a2,:::,anÞ³l

aj³0

l³0

j ¼ 1,2,:::,n

8>>>>>>>>>><
>>>>>>>>>>:

(8)

2.1.3 Fuzzy number

If ~A is the fuzzy subset of E (real set), the membership
function of E can be written as μ~A

: E↕ ↓½0,1�while
meeting: (1) r 2 E and μ~A

ðrÞ ¼ 1; and (2) for any

α 2 ½0,1�, ~Aα ¼ r 2 Ejμ~AðrÞ³α
n o

is a closed set[17].

Fig. 1 Membership function of constraints (a) and objective function (b)
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Taking trapezoidal fuzzy numbers as examples which are
commonly used because of the handy calculation, then the
two boundaries of the fuzzy number ~A ¼ ðA1min, A1, A2,
A2maxÞ can be described as Aαmin ¼ ð1 – αÞA1min þ αA1
and Aαmax ¼ ð1 – αÞA2max þ αA2, and the corresponding
membership functionsare shown in Fig. 2. The triangle
fuzzy numbers are special cases of trapezoidal fuzzy
numbers. α is the level set that describes the fuzzy degree
of membership level. Different α levels can quantitatively
expound different levels of the possibility of events under
uncertainty.

2.1.4 Fuzzy chance-constrained programming

When uncertainties of some elements in the right-hand-
side constraints are expressed as probability distributions,
chance-constrained programming (CCP) can be used[18]. A
standard CCP constraint Eq. 9 can be converted into a
deterministic one, i.e., Eq. 10 when the left-hand-side
coefficients [elements of AiðtÞ] are deterministic and the
right-hand-side coefficients ½biðtÞ� are random (for all pi
values)[19].

Pr fAiðtÞX£biðtÞg³1 – pi,   i ¼ 1,2:::,m (9)

AiðtÞX£biðtÞðpiÞ,   i ¼ 1,2:::,m (10)

where AiðtÞ 2 AðtÞ, biðtÞ 2 BðtÞ, t 2 T ; AðtÞ, BðtÞ are
sets with random elements defined on probability space
T ; piðpi 2 ½0,1�Þ is a given level of probability for
constraint i (i.e., significance level, which represents the
admissible risk of constraint violating); m is the number of
constraints. biðtÞðpiÞ ¼ F – 1ðpiÞ, the cumulative distribution
function of biðtÞ  ½i:e:, FiðbiðtÞÞ� and gives the probability
of violating constraint iðpiÞ [20].
When pi and AiðtÞ are fuzzy with ambiguity and

vagueness features, fuzzy chance-constrained program-
ming (FCCP) is generated based on a combination of fuzzy
and probability distributions. For transforming the FCCP
into FLP, the solution approach can be summarized as:
(1) convert the fuzzy number into deterministic number as

introduced above; (2) convert the uncertain constraints to
deterministic constraint based on the CCP technique.

2.1.5 Fuzzy optimization theory

Fuzzy optimization theory (FOT) is an efficient tool to
calculate multi-objective weights[21], which will integrate
multiple objectives into a comprehensive coefficient (uj)
quantitatively. Several steps are needed when calculating
uj: (1) calculate relative degree of membership matrix
R ¼ ðrijÞm�n, among which, rij ¼ xij=max xj corresponds
to bigger means better indexes, while rij ¼ min xij=xj
corresponds to smaller means better indexes; (2) calculate
the transposed matrix of R ¼ ðrijÞm�n, that is, W ¼ RT ¼
ðωjiÞn�m; (3) calculate non-normalized weighting vectors

w ið Þ ¼ 1

1þ
XJ
j

  ð1 –ωjiÞp=
XJ
j¼1

ωp
ji  # 2

p

" (11)

where, p is distance parameter, with p ¼ 1 means
Hamming distance and p ¼ 2 means Euclidean distance;
(4) unitary processing of non-normalized weighting
vectors; (5) calculate maximum relative membership
degree of comprehensive benefit

uj ¼
1

1þ
Xm
i¼1

½wiðrij – 1Þ�p=
Xm
i¼1

ðwirijÞp ) 2
p

( (12)

2.1.6 Linear fractional programming

A linear fractional programming (LFP) model can be
expressed as:

max f xð Þ ¼ cxþ α
dxþ β

Ax£b

x³0

8>><
>>: (13)

where, A is m� n matrix; x and b are column vectors with
n and m components; c and d are row vectors with n
components, α and β are constants. Duality theory[22] is
used to solve LFP. Eq. 13 can be converted to Eq. 14 if
(1) dxþ β > 0 with any x; (2) objective function is
continuously differentiable; (3) the feasible region is non-
empty and bounded.

min gðy, zÞ ¼ z

ATyþ dTz³cT

– bTyþ βz ¼ α

y³0

8>>>>><
>>>>>:

(14)

Fig. 2 Trapezoidal fuzzy membership function
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Equation 14 is an ordinary LP with optimal solution
ðŷ, ẑÞ. v̂ ¼ aT ŷ þ dT ẑ – cT and v̂³0 are introduced as
slack variables. x̂ is the optimal solution of Eq. 13 and û is
also a slack variable, thus ax̂ þ û ¼ b and û³0.
According to complementary slackness theorem, if x̂jv̂j ¼
0 and ŷjûj ¼ 0, Eqs. 13 and 14 share the same optimal
solutions.

2.2 Single-objective programming models for crop planting
structure optimization

2.2.1 Interval linear programming model

When the parameters of crop planting structure optimiza-
tion tend to be uncertain, fluctuant or the relevant data-
poor, the ILP can be used. For example, the market price
for different crops changes with the season, the irrigation
quota may vary with different inflow levels, etc. The model
can be expressed as:
Model 1:
Objective function

max F�
1 ¼

XJ
j

w�
j a

�
j (15a)

Water supply constraint

m�
j a

�
j £Q� (15b)

Crop planting areas constraints

XJ
j¼1

a�j £A�
max and a�j,min £a�j £a�j,max (15c)

Non-negativity constraint

a�j ³0 (15d)

The meanings of all the symbols in the five models

developed in this study are shown in Table 1. The solution
approach of Model 1 is based on 2.1.1.

2.2.2 Inexact fuzzy chance-constrained programming
model

In most cases, irrigation quotas (mj) and water availability
(Q) are in reality stochastic. However, if the data of these
random variables are deficient, they can be expressed as
interval or fuzzy numbers to express their randomness.
Interval numbers are capable of handling uncertainties
with a lower data requirement but may encounter
difficulties in tackling highly uncertain parameters. Fuzzy
numbers have a good balance between information
accuracy and data requirement with flexibility in applica-
tion. Moreover, in arid and semi-arid regions with water
shortage, water resources deficiency has restricted the crop
planting structure planning and thus reflected the economic
development of agriculture. However, in most cases, the
decision makers incline to obtain the maximum planting
benefit in an allowed violation probability of available
water supply. Thus, under such conditions, the IFCCP
model was developed for crop planting structure optimiza-
tion based on Model 1. The developed model can be
described as:
Model 2:

max F�
2 ¼

XJ
j

w�
j a

�
j (16a)

Pos
XJ
j¼1

~mja
�
j £~Q

( )
³1 – ~p (16b)

XJ
j¼1

a�j £A�
max (16c)

Table 1 Definition of symbols used in the models developed

Parameters and variables Meaning and instructions

w�
j /(CNY$hm–2) Economic benefit of crop j

a�j , a�j,min, a
�
j,max /(�104 hm2) The planning areas (decision variable), the minimum planting area, and the maximum planting area of crop j, respectively

Z0 /(�104 CNY) The optimal objective function solution of ordinary LP

Posf$g Possibility condition

mj /(�10–4 m3$hm–2) Irrigation quotas

Q /(�104 m3) Water availability

p Probability of violating constraint

A /(�104 hm2) Crop total planting area

uj Maximum relative membership degree of comprehensive benefit

W /(�104 CNY) Total input of planting crops

Note: Assume X is a parameter, then X� is an interval parameter with X – and Xþ representing the lower bound and upper bound of X�, respectively; ~X is a fuzzy
number with X ,  X ,  X representing the lowest possible value, the most credible value, and the highest possible value.
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a�j,min£a�j £a�j,max (16d)

a�j ³0 (16e)

Based on the solution approaches introduced in Sections
2.1.1, 2.1.3 and 2.1.4. Model 2 can be converted into the
following two submodels:
The upper bound of IFCCP

max Fþ
2 ¼

XJ
j

wþ
j a

þ
j (17a)

½ð1�αÞmj þ αmj�aþj £½ð1 – αÞQ2 þ αQ2�½ð1 – αÞpþαp� (17b)

XJ
j¼1

aþj £Aþ
max (17c)

a –
j,min£aþj £aþj,max (17d)

aþj ³0 (17e)

The lower bound of IFCCP

max F –
2 ¼

XJ
j

w –
j a

–
j (18a)

½ð1�αÞmj þ αmj�a –
j £ ð1 – αÞQ1 þ αQ1

h i ð1 – αÞpþαp½ �

(18b)

XJ
j¼1

a –
j £A –

max (18c)

aþj,min £a –
j £a –

j,max (18d)

a –
j £aþjopt (18e)

a –
j ³0 (18f )

wheremj and p are triangle fuzzy numbers;Q is trapezoidal
fuzzy number, with Q1 and Q2 representing the lower
and upper bounds of the trapezoidal fuzzy number Q when
a = 1, respectively; mj and mj are the lower and the upper

values of fuzzy number mj under a certain a level; similar
explanations also apply to p and Q.

2.2.3 Inexact fuzzy linear programming model

Apart from the uncertainty of parameters/variables, the
fuzziness in the constraints and objective functions also

exists because of natural conditions and people’s ideology,
such that the planting area of a certain crop is usually
expressed as “approximately” less than or more than a
specific value. In such a case, the IFLP model for crop
planting structure optimization can be used. In addition,
considering the grayness of some parameters and variables,
the ILP model and FLP model were integrated into the
IFLP model.
Model 3:

max F�
3 ¼

XJ
j

w�
j a

�
j ³

~
Z0 (19a)

m�
j a

�
j £Q� (19b)

XJ
j¼1

a�j £A�
max (19c)

a�j,min £
~
a�j £

~
a�j,max (19d)

a�j ³0 (19e)

For the solution of Model 3, the IFLP model has to be
converted into the two FLP models first with the upper and
lower bounds submodels based on ILP method, then
transferring each boundary of the FLP model into ordinary
LP models according to the theory introduced in 2.1.2.

2.3 Multi-objective programming models

2.3.1 Fuzzy-optimization-theory-based fuzzy linear
multi-objective programming model

The essence of FOT is to calculate the optimal relative
weights of different objectives to transform the multi-
objective programming problems into single-objective
problems. Through coupling the FOT with FLP, the
developed model can deal with both fuzziness and multi-
objective in crop planting structure optimization. The
developed model can be written as:
Model 4:

max F4 ¼
XJ
j

ujaj³
~
Z0 (20a)

XJ
j¼1

mjaj£Q (20b)

XJ
j¼1

aj£Amax (20c)
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aj,min £
~
aj £

~
aj,max (20d)

aj³0 (20e)

To solve this model, the FOT is first adopted to
transform the multi-objective model into a single-objective
model through maximum relative membership degree of
comprehensive benefit. Secondly, changing the fuzzy
model to deterministic model based on 2.1.2.

2.3.2 Multi-objective fractional programming model

Sometimes, to avoid the subjective factors when determin-
ing index weights of multiple objective functions, the
quantification of each objective function is necessary. FLP
is an effective way to solve the above problem, especially
when the overall efficiency is needed. The developed MFP
for crop planting structure optimization in this paper
includes two objectives: economic benefit (expressed as
total revenue of planting crops) and social benefit
(expressed as the minimum irrigation water use). The
model can be described as follows:
Model 5:

max F5 ¼
max F5ð1Þ
min F5ð2Þ

¼
max

XJ
j¼1

wjaj –W

min
XJ
j¼1

mjaj

(21a)

XJ
j¼1

mjaj£Q (21b)

XJ
j¼1

aj£Amax (21c)

aj,min £aj£aj,max (21d)

aj³0 (21e)

The solution approach is on the basis of 2.1.5.

3 Model application in crop planting
structure optimization

The study area is located in Minqin County (103°02′–
104°12′ E, 38°05′–39°06′ N), Gansu Province, north-west
China. Minqin County is one of the most arid regions in
China, with anaverage annual rainfall of 113 mm and
average annual evapotranspiration of 2644 mm. The total
area of Minqin County is 1.59 km2, with the oasis
accounting for 15%. Illumination in Minqin County is
conductive to the growth of crops and more than 90% of
the total water consumption is for agricultural irrigation.
The main crops include spring wheat, spring maize, oil
crops, vegetables, all kinds of melons, etc. Optimizing crop
planting structure helps alleviate the serious water
resources shortage in Minqin County.
Considering the uncertainties and multiple objectives,

the five models developed in this study were applied to the
real case study in Minqin County to allocate limited land
resources to various crops. Figure 3 demonstrates the
process of model development and the technology road-
map for this study. The conditions for each model are

Fig. 3 Technology roadmap
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explained in Sections 2.2 and 2.3. In this study, spring
wheat, spring maize, oil flax and seed watermelon were
chosen as example crops, among which spring wheat and
spring maize are grain crops, oil flax an oil crop and seed
watermelon is a cash crop. Three flow levels, i.e., low,
middle and high flow levels were chosen as different
scenarios based on PIII frequency curves of precipitation
from 1985 to 2013 as shown in Fig. 4. The probabilities for
the low, middle and high flow levels are 75%, 50%,
and 25%, respectively. Table 2 and Table 3 give the basic
data for calculating the models. In Model 2, ~Q

(½Q1min, Q1, Q2, Q2max �) is trapezoidal fuzzy number;
~mj (½mmin, m, mmax �) and ~p (½pmin, p, pmax �) are triangu-
lar fuzzy numbers.

4 Results and discussion

4.1 Solutions of single-objective programming models

The single-objective programming models for optimiza-
tion of crops planting structure in this study were the ILP,
IFCCP and IFLP models. Through interactive algorithm,
the results of ILP were be obtained as shown in Table 4. It
can be seen that in terms of both optimal crop planting
areas and benefits, the corresponding figures decrease from
high to middle then low flow levels. This follows the same
order as the water availability of these flow levels. The
available amount of water for crops at high flow level is the
greatest and thus leads to a larger planting area allocation.
This also indicates that the water availability directly
affects crop planting structure. In addition, all the crops
studied, except seed watermelon, change within the
corresponding intervals under different flow levels. The
results are related with the per unit benefit of each crop.
That is, as the per unit benefit of seed watermelon is the
highest, the planting area requirement of seed watermelonFig. 4 PIII frequency curve of precipitation

Table 2 Basic data for different flow levels

Flow levels Water supply/(�104 m3)
Water supply (fuzzy)/(�104 m3) P (fuzzy)

(Q1min, Q1, Q2, Q2max) (Pmin, P, Pmax)

Low [7082.40, 7252.81] (6870.17, 7082.40, 7252.81, 7465.04)

(0.05, 0.10, 0.15)Middle [7220.72, 7504.90] (7087.37, 7220.72, 7504.90, 7638.25)

High [7368.05, 7571.04] (7228.03, 7368.05, 7571.04, 7711.06)

Table 3 Basic data for different crops

Crops
Output value

The biggest
planting area

The smallest
planting area

The biggest total
planting area

The smallest total
planting area

Irrigation water requirement
(fuzzy) (mmin, m, mmax)

/(CNY$hm–2) /(�104 hm2) /(�104 hm2) /(�104 hm2) /(�104 hm2) /(m3$hm–2)

Spring wheat [48.58, 64.77] [1.61, 1.65] 1.27

[2.36, 2.39] [1.95, 2.10]

(3500, 3750, 3800)

Spring maize [63.06, 87.32] [0.62, 0.63] 0.52 (3000, 3400, 3563)

Oil flax [41.10, 61.64] [0.013, 0.014] 0.007 (2250, 2600, 2850)

Seed watermelon [71.98, 95.98] [0.18, 0.20] 0.12 (1350, 1800, 2138)

Table 4 Planting area and system benefit forthe interval linear programming model

Items Crops Low flow level Middle flow level High flow level

Planting area (�104 hm2)

Spring wheat 1.27 [1.27, 1.33] [1.31, 1.35]

Spring maize [0.59, 0.63] [0.62, 0.64] [0.62, 0.63]

Oil flax 0.007 [0.013, 0.014] [0.013, 0.014]

Seed watermelon [0.18, 0.20] [0.18, 0.20] [0.18, 0.20]

System benefit (�106 CNY) [276, 316] [282, 325] [287, 327]
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should be given priority to obtain the maximum economic
benefit under the limited water availability conditions.
Figure 5 shows the results of the IFCCP model, which

integrates the ILP and FCCP, and Fig. 6 illustrates the total
system benefit under different α-cuts and different flow
levels. Five α-cuts values (0, 0.2, 0.5, 0.8, 1) were chosen,
which made the information relatively uniform. The upper
boundary of both the crop planting area and the system
benefit decrease as α-cut value increases, while the
corresponding lower boundary increases as α-cut value
increases. This is because the larger the α-cut value, the
larger the possibility of the occurrence of fuzzy events.
Thus, the gap between the upper boundary and lower
boundary is narrow when α = 1 and wide when α = 0.
Table 5 shows the results from the IFLP model. In this

study, the scaling values for spring maize, oil flax and seed
watermelon are set. Given that the IFLP model integrates
ILP and FLP, each crop has an upper and a lower boundary
scaling value. The upper and corresponding lower

Fig. 5 Planting areas for different crops under differentα-cut values and flow levels of the inexact fuzzy chance-constrained
programming model. SW, spring wheat; SM, spring maize; OF, oil flax; SWM, seed watermelon.

Fig. 6 System benefit of inexact fuzzy chance-constrained
programming model. Low upper, the upper boundary of low
flow level; Low lower, the lower boundary of low flow level;
Middle upper, the upper boundary of middle flow level; Middle
lower, the lower boundary of middle flow level; High upper, the
upper boundary of high flow level; High lower, the lower boundary
of high flow level.
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boundary scaling values for spring maize, seed watermelon
and oil flax were set to 380, 113, 7 hm2, and 133, 47,
6.7 hm2, respectively. Based on the approach of FLP,
d0 = [48, 109], Z0 = [276, 316] million CNY at low flow
level, d0 = [137, 281], Z0 = [282, 325] million CNY at
middle flow level, and d0 = [193, 281], Z0 = [287, 327]
million CNY at high flow level can be obtained. Crop
planting area increases as water availability increases
except for oil flax, due to its lower per unit benefit.

4.2 Solutions of multi-objective programming models

The FOTB-FLMP model had two objectives in this study:
economic benefit (expressed as irrigation benefit contribu-
tion values) and social benefit (expressed as agricultural
commodities proportion). The agricultural commodities
proportion (%) equals the ratio of commodity (t) and
production yield (t), as shown in Table 6. In this study, both
Hamming distance (p ¼ 1) and Euclidean distance (p ¼ 2)
were calculated and their maximum relative membership
degrees were uj ¼ ð0:5955, 0:9859, 0:5812, 1Þ and uj ¼
ð0:4354, 0:9699, 0:4191, 1Þ respectively based on the
approach of FOT. As the FLP model was introduced, the
scaling value of spring wheat, spring maize, oil flax and
seed watermelon were set to 27, 380, 7 and 47 hm2,
respectively. Applying the method of FLP, the results of

FOTB-FLMP can be seen in Table 7. The maximum
membership degrees for p ¼ 1 and p ¼ 2 are 0.5007 and
0.4995, respectively. It can be seen that crop planting area
changes slightly between p ¼ 1 and p ¼ 2, because of their
similar maximum relative membership degree. Thus,
decision makers can choose any distance to calculate the
model for convenient calculation.
Taking the middle flow level as an example, the MFP

model for crop planting structure optimization was
calculated. The optimal planting areas of spring wheat,
spring maize, oil flax, and seed watermelon are 12667,
5200, 73, and 1240 hm2, respectively, and the final
objective ratio is 4.23 CNY$m–3. It can be seen that the
results tend to support water-saving. Such results are a
positive benefit for arid and semi-arid regions with serious
water shortage problems.

4.3 Comparison of the five models

This study developed five models for crop planting
structure optimization, with three being single-objective
and two multi-objective models. All the three single-
objective models are based on ILP, considering the
grayness in the system. If the fuzzy uncertainty exists in
the parameters, decision makers can choose the IFCCP
model, considering the stochastic characteristic of water

Table 5 Planting area for inexact fuzzy linear programming model

Planting area /(�104 hm2) Low flow level Middle flow level High flow level

Spring wheat 1.27 [1.27, 1.29] [1.29, 1.31]

Spring maize [0.58, 0.63] [0.62, 0.67] [0.64, 0.67]

Oil flax 0.007 0.007 0.007

Seed watermelon [0.19, 0.20] [0.19, 0.20] [0.19, 0.20]

Table 6 Economic parameters for different crops

Crops
Economic benefit
/(CNY$hm–2)

Social benefit
/%

Commodity
/t

Production yield
/t

Agricultural commodities proportion
/%

Spring wheat 13116 25 24839.35 99359 25

Spring maize 16372 60 28296.00 47160 60

Oil flax 11558 30 63.00 210 30

Seed watermelon 18896 65 57135.00 87900 65

Table 7 Maximum relative membership degree and planting area for different crops for FOTB-FLMP model

Crops
Maximum relative membership degree Optimal crops planting areas/hm2

p = 2 p = 1 p = 2 p = 1

Spring wheat 0.4354 0.5955 13290 13291

Spring maize 0.9699 0.9859 6477 6476

Oil flax 0.4191 0.5813 70 70

Seed watermelon 1 1 1977 1977

Note: FOTB-FLMP model represents fuzzy-optimization-theory-based fuzzy linear multi-objective programming model.
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availability as well. If the fuzzy uncertainty exists in the
constraints and objective function, the IFLP model can be
chosen. Actually, the results from the ILP model area
special situation of the IFCCP model, and because the
IFCCP model takes all constraints involved in the fuzzy
relationships into the optimization process, solutions with
the IFCCP model would be more reliable. Using the IFLP
model, as there are scaling values of different crops, the
final benefit would be larger than the ordinary ILP model.
Decision makers should choose the appropriate model
according to the particular situation. In this study, the
results of the three single-objective models are mostly
expressed as intervals which can indicate the uncertainty of
the real world more sensitively. A greater area will be
allocated to crops to increase the total system benefit and
will consequently increase the risk of water shortage, while
a smaller area would reduce the water shortage risk.
Accordingly, considering different interval results, opti-
mistic decision makers may be inclined to choose the
upper boundary of allocated planting area and risk-averse
decision makers would choose the lower boundary.
Sometimes, however, single-objective programming

models cannot satisfy the demands of sustainable
development. To satisfy such demands, multi-objective
programming models should be adopted. The attempt to
integrate the FOT method with the FLP model gives the
FOTB-FLMP model the capacity to reflect both multi-
objective and fuzzy uncertainty, although the results tends
to be similar to the single-objective programming models
because of the planting area limitation of each crop. MFP is
another type of multi-objective programming that can
express the two objective functions quantitatively, and
gives the final ratio of the whole system. The advantage of
the MFP model is that it can avoid the subjectivity of some
multi-objective models in their weight coefficient. Such
models are especially effective when efficiency of a system
is important.

5 Conclusions

In this study, five models were developed for crop planting
structure optimization, including ILP, IFCCP, IFLP,
FOTB-FLMP, and MFP models. The first three models
were single-objective models under uncertainty (grayness,
randomness and fuzziness), while the last two models were
multi-objective models, with FOTB-FLMP model also
considering fuzzy uncertainty. Each of the models has their
applicable conditions and the results of the models when
applied to the real case study have demonstrated their
feasibility and applicability. As crop planting structure
planning systems are complex, inclusion of only water
supply and planting area constraints cannot fully reflect
a system’s full characteristics. Although this paper
focuses on method application and development, more

complicated physical models for crop planting structure
optimization are desirable to fully reflect the complexity of
crop planting structure optimization systems.
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