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Abstract Investigating long-term variation and predic-
tion of streamflow are critical to regional water resource
management and planning. Under the continuous
influence of climate change and human activity, the trends
of hydrologic time series are nonstationary, and conse-
quently the established methods for hydrological fre-
quency analysis are no longer applicable. Five methods,
including the linear regression, nonlinear regression,
change point analysis, wavelet analysis and Hilbert-
Huang transformation, were first selected to detect and
identify the deterministic and stochastic components of
streamflow. The results indicated there was a significant
long-term increasing trend. To test the applicability of
these five methods, a comprehensive weighted index was
then used to assess their performance. This index showed
that the linear regression was the best method. Secondly,
using the normality test for stochastic components
separated by the linear regression method, a normal
distribution requirement was satisfied. Next, the Monte
Carlo stochastic simulation technique was used to simulate
these stochastic components with normal distribution, and
thus a new ensemble hydrological time series was obtained
by combining the corresponding deterministic compo-
nents. Finally, according to these outcomes, the stream-
flow at different frequencies in 2020 was predicted.

Keywords Monte Carlo, nonstationary, trend detection,
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1 Introduction

A streamflow time series (STS) is a comprehensive
outcome under the influence of the climatological and
geographical conditions and relevant human activities[1].
Generally, these data should accord with the principles of
representation, reliability and consistency in long-term
hydrologic frequency analysis. However, streamflow is
increasingly affected by climate change and human
activity. For example, climate change is an exogenous
process associated with precipitation and temperature[2],
and human activity includes hydraulic engineering,
cropping and irrigation water withdrawals, which are the
endogenous factors to variation in the STS. Therefore, STS
cannot usually meet the requirements of being consistent/
stationary, so it is defined as the nonstationary STS
(NSTS). The NSTS is composed of the deterministic
components and stochastic components of streamflow.
Deterministic components are the trends of time series over
a specific period of time, while the stochastic components
are usually stable and satisfy specific random probability
distributions (such as, Pearson type III distribution, normal
distribution, log-normal distribution, uniform distribution
and extreme value distribution). Identification and detec-
tion of these components in the NSTS are important parts
for the study of the formation of and influences on
hydrologic time series, and they are also the foundation of
streamflow stochastic simulation, which underpins stream-
flow prediction.
For trend detection and analysis, statistics methods,

which will help to better investigate the changes of a long-
term streamflow, are widely used[3–9]. There are more than
20 methods used for analysis of trends and abrupt
changes[10]. Parametric regression methods like linear
regression and nonlinear regression are used to quantify
trends[11,12]. Nonparametric methods, such as kernel,
spline, and rank correlation methods, are used for the
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NSTS trend analysis, wavelet analysis[13] and the Hilbert-
Huang transform[14]. The Mann-Kendall trend test is
used for shift trends[13,15], and Wilcoxon-Mann–Whitney
test[16] and Pettitt test for abrupt changes[7,17]. These
methods have made significant contributions to informa-
tion for hydrologic time series trend detection and analysis.
However, these methods cannot identify and detect trends
and abrupt change points simultaneously. In other words,
these methods focus on either trend analysis or change
point detection. Additionally, streamflow trends are also
characterized by statistical parameters, such as mean value
or variance. These test results may be inconsistent and
unsystematic, and even lead to different understanding of
variation in the NSTS because of their specific conditions
and limits[18]. Therefore, it is difficult to effectively detect
trends and analyze streamflow using only one or two of
these methods.
A better understanding of the NSTS can assist in

forecasting the future inflow levels and support regional
water resources management and planning. However,
current hydrological frequency analysis methods with the
assumption of same distributions are no longer applicable.
After trend analysis and detection of the NSTS, determi-
nistic and stochastic components of streamflow can be
decomposed into the constituent parts. To derive the
frequency distribution of streamflow in the past, present
and future, stochastic simulation techniques can be
adopted. The Monte Carlo stochastic simulation technique
(MCST)[19], which enables simulation of the actual
situation and investigation of the intrinsic principles by
generating numerous random numbers, can be applied to
simulate and generate sampling points of stochastic
components. When using the MCST, sufficient time is
needed to repeatedly generate random numbers for
simulating stochastic components[1]. Then, an ensemble
hydrological time series for hydrological frequency
calculation can be derived by adding the corresponding
deterministic components.
Therefore, this study was conducted in three major

sections. Initially, the preliminary test of significant trend
analysis was conducted to investigate change/variation in
the long term NSTS using a correlation coefficient test,
the Spearman correlation analysis test and the Kendall
correlation test. The nonstationary nature of trends in
annual streamflow were shown. Secondly, five different
methods for trend identification and detection of determi-
nistic and stochastic components of the NSTS motivated
by the concept of decomposition and ensemble were
selected and their corresponding results and performance
were compared and evaluated to further improve their
detection accuracy. Finally, the MCST was applied to
simulate the stochastic components and thus the frequency
distribution of the NSTS in 2020 was derived by
integrating with the corresponding deterministic compo-
nents. Therefore, the annual streamflow frequency was

calculated to obtain the predicted streamflow at different
frequencies in 2020. These predicted results provide a
scientific basis for the water resources management in the
Heihe River Basin, China. This study was organized as
shown in Fig. 1.

2 Study area

The Heihe River Basin is the second largest inland river
basin in Northwest China[20]. The basin covers an area of
11.6 � 104 km2 and the mainstream of the river is 821 km
long. The river originates from the Qilian Mountains and
flows through the Hexi corridor of Gansu Province and
finally enters into the western part of the Inner Mongolia
Plateau. It is divided into three segments including upper,
middle and lower reaches which are controlled by
Yingluoxia and Zhengyixia hydrological stations. The
Yingluoxia station is at the outlet of the Heihe River from
the upstream mountainous area[21] and the mid and
downstream areas of the Heihe River Basin are the main
areas of water consumption. Especially, the midstream
region, which is one of the major irrigation and grain/cereal
crop production areas of China. Agriculture is the
dominant activity, with 84% of the total available water
being used for agricultural irrigation. Moreover, with the
population growth and eco-social development, mismatch
between water supply and demand has seriously restricted
the sustainability of the local economy, society and
ecology. Therefore, to support sustainable development,
it is crucial to investigate the changes of the long-term
annual streamflow in the Heihe River Basin. The
objectives of this study were to (1) examine the annual
streamflow at Yingluoxia hydrological station from 1945
to 2013, (2) reveal the underlying mechanisms of change in
streamflow, and (3) predict future streamflow. Figure 2
shows the study area within the Heihe River Basin.
Figure 3 shows the mean annual streamflow at Yingluoxia
hydrological station from 1945 to 2013.

3 Methodology

3.1 Preliminary data test

Before studying the variation in the long-term streamflow,
related statistical trend analysis was conducted to detect the
overall trend in streamflow. Furthermore, the trend analysis
can identify whether there were increasing or decreasing
changes over the historical period and whether the
change was gradual. To investigate the potential overall
streamflow changes, three methods for trend analysis
were undertaken: the correlation coefficient test, the
Spearman correlation analysis test and the Kendall
correlation test.
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Fig. 1 The framework used for the study of streamflow at Yingluoxia hydrological station, Heihe River Basin, China
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3.1.1 Correlation coefficient test

If there is a linear monotonic trend in the NSTS, then it can
be described by linear regression equation. Therefore, the
test was conducted by calculating the correlation coeffi-
cient (r) from the corresponding time series. The equation
was formulated as follows:

r ¼

Xn
t¼1

xt – xð Þ t – tð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
t¼1

xt – xð Þ2
Xn
t¼1

t – tð Þ2
s (1)

where t ¼ 1

n

Xn
t¼1

t ¼ nþ 1

2
; x ¼ 1

n

Xn
t¼1

xt, xt is the time

series, t is time, n is the number of time series.
In this study, standard normal distribution was employed

to test whether the time series data can be accepted as
significant changing. When the absolute values of correla-

tion coefficient are no larger than the typical critical value
(i.e., 1:645=

ffiffiffi
n

p
, 1:96=

ffiffiffi
n

p
and 2:576=

ffiffiffi
n

p
under the 10%,

5% and 1% significance level, respectively), the NSTS
data was accepted[1].

3.1.2 The Spearman correlation analysis test

The Spearman rank correlation coefficient (r) was
formulated as follows:

r ¼ 1 –

6
Xn
t¼1

d2t

n3 – n
(2)

where n is the number of time series, dt = Rt – t, Rt is the
corresponding rank when the numbers in ascending order.
The t test method was used to test the statistical variable:

T ¼ r
n – 4

1 – r2

� �1
2
. When the typical critical value jT j³tα=2

Fig. 2 The Heihe River Basin showing the location of its two hydrological stations. The red, dark green and yellow areas in this map are
Gaotai County, Linze County and Ganzhou District in the midstream of Heihe River Basin, respectively.
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ðα ¼ 0:01, 0:05,0:1Þ, the correlation relationship between
the NSTS and time was explained, and also indicated there
was long-term significant trend.

3.1.3 The Kendall correlation test

Similar to the Spearman correlation analysis test, the
Kendall rank correlation coefficient (r) was formulated as
follows:

u ¼ l

½VarðlÞ�1=2 (3)

where l ¼ 4m

nðn – 1Þ – 1 and VarðlÞ ¼ 2ð2nþ 5Þ
9nðn – 1Þ , m is the

number of all dual values when xi < xjðxi, xj, j > iÞ. When
the number of time series was increasing, the test statistics
follows a standard normal distribution. When the typical
critical value jU j³Uα=2ðα ¼ 0:01,0:05,0:1Þ, this indicates
there was long-term significant trend.

3.2 Identification and detection of the deterministic
components

Hydrological frequency calculation require conditions of
the hydrologic time series to be consistent/stationary. If
there are increasing or decreasing changes during the
period of records and the change is gradual or abrupt, it
does not meet the condition of consistency. Therefore, it is
necessary to identify, test and describe these components
(i.e., deterministic components, period terms and stochas-
tic components), and to separate them from the NSTS.
Many methods have been applied to identify and detect the

trends. From these methods, the linear regression, non-
linear regression, change point analysis, wavelet analysis
and Hilbert-Huang transform (HHT) with empirical mode
decomposition (EMD) were chosen to identify and detect
the deterministic components of the NSTS in this study.

3.2.1 Linear regression method

Generally speaking, according to the results from the
preliminary data test, if the NSTS has an overall increasing
or decreasing changes in the period of records, this trend
can be described as either a linear or nonlinear trend.
However, from Fig. 3, it is not evident whether the
streamflow trend at Yingluoxia is of a linear monotonic or
nonlinear form. In this study, the NSTS was first fitted by
linear regression. The mathematical model of linear
regression and the estimated values of parameters â,b̂
using the least square method was as follows:

X ðtÞ ¼ aþ bt þ ηt, t ¼ 1,2,:::,n (4)

b̂ ¼

Xn
t¼1

t – tð Þ xt – xð Þ
Xn
t¼1

t – tð Þ2
(5)

â ¼ x – b̂t (6)

where t ¼ 1

n

Xn
t¼1

t ¼ nþ 1

2
; x ¼ 1

n

Xn
t¼1

xt. Thus, the linear

regression equation X(t) was obtained.

Fig. 3 Annual streamflow at Yingluoxia hydrological station from 1945 to 2013
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3.2.2 Nonlinear regression method

Besides linear regression, nonlinear regression was also
used in the streamflow trend analysis for Yingluoxia. It was
not clear which kind of nonlinear regression should have
been adopted, so the streamflow at Yingluoxia was fitted
with the exponential, logarithmic and polynomial func-
tional curves. By comparing the correlation coefficients of
these nonlinear regression methods, the highest correlation
coefficient was taken as the nonlinear fit (Table 1). It was
found that exponential fits were the best, and thus the
deterministic components trend equation was obtained.

3.2.3 Change point analysis

In this study, trend analysis of annual streamflow was
undertaken to examine changes during the period for
which records were available. The Mann-Kendall method
is commonly used to detect abrupt changes in a trend[10].
The assumption of normality is not required but serial
correlation should be used for correcting the P-
values[22,23]. The procedure for this method is repeated
for a time series that includes all possible periods of at least
10 years of records[23]. The P-values (significance level of
5%) of the trend tests was adopted here. Abrupt change
point detection was conducted to determine potential
change points (joint points). Therefore, the NSTS was
divided into several segments according to the potential
change points. Finally, based on the mean values of annual
streamflow in different periods before and after the
occurrence of abrupt change points, the corresponding
deterministic components were obtained.

3.2.4 Wavelet analysis

Wavelet analysis is capable of signal representation both in
time and frequency domain, especially for the study of
nonstationary time series like hydrological processes (i.e.,
precipitation and streamflow). Wavelet analysis is a time-
frequency analytical method to assess the time scales of
signals, and it has the powerful characteristic of multi-
resolution analysis. Thus, deterministic and stochastic
components at various time scales can be identified and
decomposed by the wavelet analysis. When multi-resolu-
tion decomposition is performed, with the increase in the
level of wavelet decomposition, the time resolution is

reduced and the frequency resolution becomes higher.
Therefore, the final residual term of the low frequency
component is the trend component, which can be regarded
as a deterministic component[24]. In this study, a
Daubechies orthogonal wavelet was applied to decompose
the annual streamflow from 1945 to 2013, and the five
levels of wavelet decomposition were used to obtain d1–d5
of the high frequency components and the low frequency
components of a5[24]. Finally, the appropriate functional
forms was used to fit the trend components, such as linear
function, power function, logarithmic function, exponen-
tial function or polynomial function. The corresponding
deterministic components were obtained.

3.2.5 Hilbert-Huang transform

Empirical mode decomposition (EMD) of the HHT was
proposed by Huang et al.[25]. Generally speaking, HHT has
a similar role in wavelet analysis, but the HHT is empirical
while wavelet analysis has a theoretical mathematical
basis. The HHT inherits the characteristics of multi-
resolution wavelet transform analysis, but it is also an
adaptive method used for signal analysis, which has great
advantages in the analysis of nonlinear and nonstationary
time series[26]. The HHT can obtain the physical meaning
associated with the full nonlinear/nonstationary system
through individual components in the linear system rather
than a physically linear expansion only[27]. Thus, the
NSTS can be decomposed by EMD into a series of
components including several independent intrinsic mode
functions (IMF) at different time scales and a residual
component, which represents the overall trend of the
original time series[26]. Finally, appropriate functional
forms can be chosen to fit the deterministic trend
components and the corresponding deterministic compo-
nents were obtained.

3.3 Separating the stochastic components

The NSTS is generally composed of two or more
components, for example, items of tendency (deterministic
components), period and stochastic components. In this
study, the stochastic component St was expressed as St ¼
Yt –Xt (where Yt is the NSTS) based on the assumption that
each component of the NSTS satisfies a linear super-
position principle. Therefore, after deducting the determi-
nistic components from the NSTS, the remaining part was
considered as a pure stochastic component. It is necessary
to diagnose and test the consistency condition for the
stochastic component of the hydrological analysis[24].
Therefore, Hurst exponent H and the critical values of
different significant levels of correlational function CðtÞ
were used to verify consistency conditions[28]. The
relationship between H and CðtÞwas as follows:

Table 1 Fits for different functional forms to the NSTS at Yingluoxia

hydrological station

Functional form Fitting formula R2/%

Exponential y = 14.443 e0.0028x 16.76

Logarithmic y = 0.8148 ln(x) + 13.847 8.08

Polynomial y = 0.0014x2 – 0.0527x + 15.699 12.91
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CðtÞ ¼ 22H – 1 – 1 (7)

According to the principle of R/S analysis, the H
exponent of the stochastic component was calculated first,
then the CðtÞ value was calculated. At a given significance
level, the significance of the CðtÞ value was tested. If it was
less than the critical value, the long-term change in the
stochastic components was considered to be not signifi-
cant. It was thus shown that the decomposition was
reasonable to satisfy the consistency condition. Therefore,
the original NSTS was decomposed into the deterministic
components (tendency) that changed significantly and the
pure stochastic components.

3.4 Evaluation of the five trend analysis methods

The above five methods can identify and used to test the
deterministic and stochastic components of the NSTS, but
it was also useful to quantitatively distinguish and compare
their applicability, advantages and disadvantages for the
streamflow at Yingluoxia hydrological station. Moreover,
by comparison, the most suitable method was obtained and
thus the deficiencies in the method used was reduced to
prevent confusion and repetitive work. The criteria for
selecting a method should not just be based on goodness-
of-fit testing but should also consider physical reasoning.
Therefore, the evaluation indexes were determined,
including (1) the Nash-Sutcliffe efficiency coefficient
between the deterministic components and the original
NSTS, (2) the relative value of the stochastic components
of the Hurst exponent, (3) the header morphological
coefficient of deterministic components for the original
NSTS, and (4) the tail morphological coefficient of
deterministic components for the original NSTS. The
same weight coefficient for each index are then adopted in
the process of evaluation, thus the comprehensive
weighted indexes of five different methods were calcu-
lated, and finally the method with the maximum value of
the comprehensive weighted index was regarded as the
ideal method. Four evaluation indexes were selected as
described below.

3.4.1 The Nash-Sutcliffe efficiency coefficient

The Nash-Sutcliffe efficiency coefficient[29] can be used to
evaluate the fit of the measured annual streamflow time
series and the deterministic trend component. The formula
is:

R2 ¼ 1 –

Xn
i¼1

ðQmea,i –Qsim,iÞ2

Xn
i¼1

Qmea,i –Qmea

� �2 (8)

where Qmea,iði ¼ 1,2,⋯,nÞ is the measured annual stream-
flow time series; Qmea is the mean value of the time series;
Qsim,i is the value of each point on the deterministic trend.

3.4.2 Hurst exponent relative value

The Hurst exponent is capable of predicting future trends
according to past trends for a time series, and it has been
extensively used to predict hydrological and climatological
processes[30]. Because non-stationary long-term correlated
time series cannot exhibit persistent behavior[28], the
degree of consistency of time series can be expressed by
the Hurst exponent. If the Hurst exponent is close to 0.5,
the consistency of the stochastic component is better, and
the accuracy of the corresponding method is higher.
Therefore, the distance difference between the Hurst
exponent and 0.5 becomes criterion. It can be expressed
as Hurst exponent relative value Ht = 1 – 2ABS (H – 0.5),
which is in the range 0–1.

3.4.3 Header morphological coefficient

In the view of a time series, actually, the overall fitting
degree between deterministic components and the original
NSTS has little difference when calculated by different
methods, but there is a distinct difference in the header or
tail position. Therefore, the distance to the header position
is selected as a rule to determine the value of the
morphological coefficient. To make all the indicators are
normalized to the range 0–1, therefore, the header
morphological coefficient that the header position in the
middle position of the five methods was 1. Then, other
header morphological coefficients were determined
according to the distance between them and the middle
position. If the degree of closeness is higher, the value is
larger. The header morphological coefficients of the
corresponding five methods are: 0.2, 0.4, 0.6, 0.8 and 1.

3.4.4 Tail morphological coefficient

Similar to the header morphological coefficient, the tail
morphological coefficient is determined by the distance
from the tail position. The tail position in the middle
position of the five methods was 1. Then, other tail
morphological coefficients were determined according to
the distance between them and the middle position. If the
degree of closeness is higher, the value is larger. The tail
morphological coefficients of the corresponding five
methods are: 0.2, 0.4, 0.6, 0.8 and 1.

3.4.5 The comprehensive weighted index

The comprehensive weighted index (W) is calculated as
follows:
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W ¼ α1Aþ α2Bþ α3C þ α4D (9)

where αi, i ¼ 1,2,3,4 is the weight of each evaluation

index, and
P4
i¼1

αi ¼ 1. In this study, αi ¼ 0:25. If the

comprehensive weighted index is the largest among five
methods, then it indicates that the method is more
applicable to the study area.

3.5 Stochastic simulation method for predicting
streamflow

3.5.1 The normality test

Before the stochastic simulation of streamflow, a statistical
test is employed to examine whether the stochastic
component is fine-modeled by a specific distribution
(i.e., normal distribution and Pearson type III distribution).
Many normality tests are widely used in statistical
analysis[31]. Among these tests, the Shapiro-Wilk test[32]

was used in this study to verify the normality of stochastic
components separated from the NSTS. This test generates
two values: W and P. The value of W is in the range 0–1,
and a higher W value means that acceptance of normality
while a lowerW value leads to rejection. IfW is equal to 1,
it means that normality is totally satisfied. If the P-value is
higher than the critical significance level, normality will be
accepted[33].

3.5.2 The streamflow ensemble method

Motivated by the concept of decomposition and ensem-
ble[34], the frequency distribution ensemble method is
adopted for the nonstationary streamflow frequency
calculation. The deterministic component of a certain
time (moment) is first predicted according to the trend of
the deterministic component. Then the MCST[35] is used to
generate a set of samples of a pure stochastic series which
satisfies the condition of randomness. Thus, the final
forecasted streamflow time series can be obtained by
integrating the predicted deterministic component into the
stochastic component. It can deduce the ensemble
hydrological distribution and its hydrological parameters.
The cumulative probability density function curve can also
be obtained based on the numerous simulated samples at
each frequency.

4 Results and discussion

4.1 Preliminary data analysis

Table 2 shows the results of the preliminary data analysis.
It was rejected by the original hypothesis at the
significance level 0.1, 0.05 and 0.01 because the value of
statistic index were larger than the typical critical values at
three significance levels. These tests showed that the NSTS
is increasing significantly. In summary, the test results
showed the trend in the NSTS was significant, which also
demonstrated it can be identified, detected and decom-
posed into deterministic and stochastic components.

4.2 Components decomposition

The results of the trend analysis using the five methods are
presented in the following sections. From the linear
regression method, the estimated values of parameters
â,b̂ can be obtained by using the least squares method.
b̂ ¼ 0:0468, â ¼ 14:522, r2 ¼ 0:13. Nonlinear regression
method was fitted with exponent functional form, and the
parameters were obtained. As for the change point
analysis, the Mann-Kendall test (Fig. 4) showed the
intersection point of Z1 and Z2 curves in the annual
streamflow time series occurred during 2003 and 2004. Z1
and Z2 are the statistical variables that follow the standard
normal distribution. They were computed based on the
original and adverse course, respectively. This result
indicates the streamflow changes in 2003, showing that a
notable fluctuation in streamflow had occurred. Thus, the
NSTS can be divided into two sub periods: 1945–2003
and 2004–2013. The mean value of the first sub period
was 15.7 � 108 m3 and the second sub period was 19.1 �
108 m3, with a difference of 3.4� 108 m3. Wavelet analysis
decomposition (Fig. 5) and deterministic trend fitting
(Fig. 6) were conducted. The results for the EMD method
and deterministic trend fitting are presented as Fig. 7 and
Fig. 8.
If the NSTS showed no trend, the hydrologic time series

was be a straight line that passes through the first point (t =
1945). Its equation was X ðtÞ ¼ X ðt1Þ, which can reflect the
streamflow situation before the variations of annual
streamflow occurred. As a result, the deterministic
components of annual streamflow was the difference in
the trend before and after the variations ðX ðtÞ –X ðt0ÞÞ. The

Table 2 The results of the preliminary data tests of streamflow at Yingluoxia hydrological station

Test
Typical critical value

Statistical index Test result
0.1 0.05 0.01

Correlation coefficient test 0.20 0.23 0.30 0.36 Significant

The Spearman correlation analysis test 1.668 1.996 2.651 3.111 Significant

The Kendall correlation test 1.64 1.96 2.58 2.98 Significant
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Fig. 4 Mann-Kendall trend test for the annual streamflow at Yingluoxia hydrological station from 1945 to 2013. Z1 and Z2 are the
statistical variables that follow the standard normal distribution. They can be computed based on the original and adverse course.

Fig. 5 Wavelet analysis decomposition for the NSTS at Yingluoxia hydrological station. d1–d5, the high frequency components at
different scales; a5, low frequency deterministic components.
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Fig. 6 Deterministic trend fitting based on wavelet analysis for streamflow at Yingluoxia hydrological station

Fig. 7 Empirical mode decomposition for the NSTS at Yingluoxia hydrological station. IMF1–IMF4, the four independent intrinsic
mode functions components in the order from the highest frequency to the lowest frequency, and one residual component, respectively.
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deterministic and stochastic components of five methods
are shown in Table 3. These results provided the
foundation for subsequent hydrological stochastic simula-
tion and prediction in the future.

4.3 Evaluation of the methods

Figure 9 shows the header and tail position for the five
methods. Therefore, the order of header morphological
coefficients of the five methods was linear regression
(1)> nonlinear regression (0.8)>wavelet analysis (0.6)>
HHT (0.4)> change point analysis (0.2). The order of the
tail morphological coefficients of the five methods were
wavelet analysis (1)>HHT (0.8)> linear regression
(0.6)> change point analysis (0.4)> nonlinear regression
(0.2). Table 4 shows the results of four evaluation indexes
and the final evaluation comprehensive weighted index.
These results indicate the comprehensive weighted index
of linear regression method was the highest, demonstrating

its applicability to the study area and thus the linear
regression method was considered the appropriate ideal
method for identification and detection of trend analysis
and deterministic components decomposition.

4.4 Prediction of streamflow hydrological distribution and
frequency analysis

According to the above results, the linear regression was
the most suitable for the study area. This method can be
used as a reference to investigate the trend of streamflow
variation in the Heihe River Basin, and it can reduce the
deficiencies in the further research. Thus, prediction of
streamflow hydrological distribution and frequency
analysis were performed based on the linear regression.
Figure 10 shows the quantile-quantile plot of the stochastic
components for the normality test. Based on the Shapiro-
Wilk test, the results consist of W and P, that is W = 0.97,
P-value = 0.16> 0.05. Therefore, the stochastic compo-

Fig. 8 Deterministic trend fitting based on Hilbert-Huang transform method for streamflow at Yingluoxia hydrological station

Table 3 The deterministic and stochastic components of five methods of analysis of streamflow at Yingluoxia hydrological station

Components Deterministic Stochastic

Linear regression method X ðtÞ ¼ 0, t<1945

0:0468t – 0:0468, 1945£t£2013

(

St ¼
Yt , t < 1945

Yt –Xt , 1945£t£2013

(Nonlinear regression method X ðtÞ ¼
0, t<1945

14:443e0:0028t – 14:4835, 1945£t£2013

(

Change point analysis X ðtÞ ¼ 0, t£2003

3:34, 2003<t£2013

(

Wavelet analysis X ðtÞ ¼ 0, t<1945

0:0006t þ 0:009t – 0:01, 1945£t£2013

(

HHT X ðtÞ ¼ 0, t<1945

0:0002t þ 0:0579t – 0:0581, 1945£t£2013

(

Note: Yt, Xt and St are the nonstationary streamflow time series (NSTS), deterministic components and stochastic components, respectively; t = T – 1944; T, the time.
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nents of the NSTS data were regarded as normally
distributed. The stochastic simulation based on normal
distribution was adopted and a complicated procedure of
stochastic simulation for Pearson type III distribution
avoided. Figure 11 is the probability distribution and
cumulative distribution function according to the MCST.

Hence, the predicted streamflow at different hydrological
frequencies (Table 5) was obtained from the relationship
shown in Fig. 11. The predicted streamflow at hydrological
frequencies 1%, 10%, 25%, 50%, 75% and 95% were
24.1� 108, 21.2� 108, 19.6� 108, 18.0� 108, 16.3� 108

and 14.1 � 108 m3. In this study the established

Fig. 9 Header and tail position among five methods of analysis of streamflow at Yingluoxia hydrological station

Fig. 10 Quantile-quantile plot of the stochastic components for the normality test for streamflow at Yingluoxia hydrological station
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hydrological matching line method was not adopted, but
the MCST was used to directly generate the streamflow
sampling points to fit cumulative probability distribution
function curve. Finally, the predicted streamflow time
series at different hydrological frequencies was calculated,
which effectively avoided the errors in associated with the
traditional (fitting curve) method. The resultant prediction
can support regional water resource system management,
planning and evaluation.

4.5 Discussion

The above methods for fitting calculating and identifying
deterministic components were effectively applied to an
historical hydrological time series in which the various
physical factors affecting the series remain unchanged.
However, if there are significant changes in certain
physical conditions (grassland, farmland and land use) in
the future, the deterministic components in the NSTS must

Fig. 11 The probability distribution (a) and cumulative distribution (b) function of the predicted ensemble streamflow time series in
2020 according to the Monte Carlo stochastic simulation technique for streamflow at Yingluoxia hydrological station

Table 4 Results of four evaluation index and evaluation weighted index among five methods of analysis of streamflow at Yingluoxia hydrological

station

Evaluation index Linear regression method Nonlinear regression method Change point analysis Wavelet analysis HHT

The Nash-Sutcliffe efficiency coefficient/% 36.00 35.56 43.49 39.20 31.64

The Hurst exponent relative value 0.82 0.78 0.74 0.74 0.9

Header morphological coefficient 1.0 0.8 0.2 0.6 0.4

Tail morphological coefficient 0.6 0.2 0.4 1.0 0.8

The weighted index 0.695 0.534 0.444 0.683 0.604
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be predicted again using the corresponding watershed
hydrological model considering the changes in land use
and vegetation cover that have occurred. Therefore, the
prediction method should be considered to be a short-term
forecast unsuitable for long-term hydrological ensemble
forecasting.
For the analysis of the stochastic components generally,

a Pearson type III distribution is widely used in China for
hydrological frequency analysis. However, when the
stochastic simulation of Pearson type III distribution is
performed, there are still shortcomings, such as low
precision, a limited range of applicable conditions and
computational complexity. Therefore, the MCST based on
the normal distribution is proposed on the premise that the
stochastic components obey the normal distribution. It is
important to establish whether the data are fine-modeled by
a normal distribution, because normal distribution is
common and easy to calculate provided the mean and
standard deviation are known. This can effectively avoid
the errors in the traditional (curve fitting) method.

5 Conclusions

In this paper, three methods were first employed to test
long-term trend of annual streamflow time series from
1945 to 2013 at Yingluoxia hydrological station. The
results showed that the trend changed significantly, which
was detected and identified by deterministic and stochastic

components. Then five methods were employed to analyze
the deterministic and stochastic components, which are the
foundation of long-term hydrologic frequency calculation
and variation analysis. To identify the most suitable
method and reduce the deficiencies in the methods used
for the investigating area, a weighted index was introduced
to evaluate the methods applied. The linear regression was
effective in identification and detection components of the
NSTS, which can be used as a reference for further study.
Finally, annual streamflow ensemble sample points in 2020
were obtained by the MCST. Thus the streamflow at
different frequencies in 2020 was predicted. The predicted
streamflow at hydrological frequencies 1%, 10%, 25%,
50%, 75% and 95% were 24.1 � 108, 21.2 � 108, 19.6 �
108, 18.0 � 108, 16.3 � 108 and 14.1 � 108 m3,
respectively. Using the cumulative probability distribution
function, the streamflow at different frequencies can be
predicted, which can effectively avoid the error of the
stochastic simulation for Pearson type III distribution.
These results indicated that long-term significantly

increasing change in annual streamflow may provide
more choices for managers. In case of sufficient water, the
managers have a positive attitude to agricultural water
management for guaranteeing the desired crop irrigation
target and crop area planning. Moreover, it can also
increase the water availability in the midstream of the
Heihe River Basin and thus alleviate the water shortages.
However, it will potentially result in the increasing
probability of flood events occurring in future. These

Table 5 Hydrological frequency calculation for the predicted of 2020 streamflow at Yingluoxia hydrological station

Rank Frequency/% Cumulative probability Predicted streamflow/(�108)m3 Reappearing period/Year

1 0.01 0.9999 28.44 10000

2 0.1 0.999 26.98 1000

3 1 0.99 24.08 100

4 5 0.95 22.11 20

5 10 0.9 21.15 10

6 20 0.8 20.03 5

7 25 0.75 19.62 4

8 30 0.7 19.26 3.33

9 40 0.6 18.63 2.5

10 50 0.5 18.03 2

11 60 0.4 17.40 1.67

12 70 0.3 16.71 1.43

13 75 0.25 16.34 1.33

14 80 0.2 15.93 1.25

15 90 0.1 14.92 1.11

16 95 0.05 14.09 1.05

17 99 0.01 12.33 1.01

18 99.9 0.001 10.54 1
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predictions can support the regional water resources
system management, planning and evaluation.
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