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Abstract Genomic selection is becoming increasingly
important in animal and plant breeding, and is attracting
greater attention for human disease risk prediction. This
review covers the most commonly used statistical methods
and some extensions of them, i.e., ridge regression and
genomic best linear unbiased prediction, Bayesian alpha-
bet, and least absolute shrinkage and selection operator.
Then it discusses the measurement of the performance of
genomic selection and factors affecting the prediction of
performance. Among the measurements of prediction
performance, the most important and commonly used
measurement is prediction accuracy. In simulation studies
where true breeding values are available, accuracy of
genomic estimated breeding value can be calculated
directly. In real or industrial data studies, either training-
testing approach or k-fold cross-validation is commonly
employed to validate methods. Factors influencing the
accuracy of genomic selection include linkage disequili-
brium between markers and quantitative trait loci, genetic
architecture of the trait, and size and composition of the
training population. Genomic selection has been imple-
mented in the breeding programs of dairy cattle, beef
cattle, pigs and poultry. Genomic selection in other species
has also been intensively researched, and is likely to be
implemented in the near future.

Keywords genomic estimated breeding value, genomic
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1 Introduction

In the past, genetic evaluation of livestock was solely
based on information of phenotype and pedigree. With the
emerging genome genotyping technology, marker-assisted
selection (MAS)[1], which indirectly selects individuals
utilizing information of markers associated with quantita-

tive trait loci (QTL), has attracted wide attention in
livestock and plant breeding. However, practical applica-
tion of MAS in breeding programs has not met the initial
expectations[2]. This is because the traits of interest are
usually controlled by a large number of genes or QTL with
small effects, and only a small number of markers are
available for MAS.
In 2001, Meuwissen et al.[3] proposed the methodology

of genomic selection (GS), a variant of MAS, which
applies predictions using markers spanning the whole
genome. Markers are assumed to be in linkage disequili-
brium (LD) with QTL, and therefore a larger proportion of
additive genetic variance can be explained by markers.
With this approach, accuracy of prediction in simulation
studies reached 0.85. Schaeffer[4] demonstrated that such
high accuracy can potentially double the genetic gain in
progeny testing schemes and save 92% of the costs of
progeny testing in dairy cattle. As a consequence, genomic
selection is being gradually adopted in the genetic
evaluation of dairy cattle in both developed and developing
countries, and in other domestic animals and plants, and
for human diseases. As illustrated in Fig. 1, implementa-
tion of GS commonly involves the following steps:
(1) constructing the training/reference population, where
individuals have both genotypic and phenotypic informa-
tion; (2) genotyping candidate individuals; (3) using the
appropriate statistical method to obtain genomic estimated
breeding value (GEBV) of candidates; and (4) selecting
individuals based on GEBV.
Since the proposal, appropriate statistical methods for

GS have been extensively developed and GS has become
more widely practiced. The purpose of this paper is to
review the commonly used statistical methods and the
implementation of GS in various fields.

2 Statistical methods

Except for the genomic best linear unbiased prediction
(GBLUP) and single-step method, which is introduced in
section ridge regression and GBLUP, other methods
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introduced here use the following basic linear regression
model to predict marker effects:

yi ¼ �þ
Xp
j¼1

Zijβj þ ei (1)

where i = 1, 2,…, n, j = 1, 2, ..., p, n is the total number of
individuals, p is the total number of markers, yi is the
response variable, m is the overall mean, Zij is the element
in the incidence matrix corresponding to genotype of
markerj for individual i, βj is the estimated effect of
markerj, and ei is the residual effect. Then, marker effects
are multiplied with the genotype for each individual to

obtain its GEBV, i.e., GEBVi ¼
Xp
j¼1

Zijβj.

2.1 Ridge regression and GBLUP

Ridge regression[5] was one of the first methods proposed
for genomic selection[3]. The ridge regression estimator:

β̂RR ¼ ðZ#Zþ lIpÞ – 1Z#ðy –�1nÞ (2)

Eq. (2) is obtained by minimizing the penalized sum of
squares:

Xn
i¼1

ðyi –�Þ –
Xp
j¼1

Zijβj

 !2

þ l
Xp
j¼1

β2j (3)

which additionally constrains the sum of the squared
coefficients, compared to ordinary least squares. Therefore,
ridge regression not only minimizes the residual sum of

squares, but also has a penalty term, i.e., l
Xp
j¼1

β2j , on the

estimated marker effects β. l (≥0) is the penalty parameter
which controls the strength of shrinkage. The parameter l
can either be fixed or estimated by different methods, such
as cross-validation employed in Howard et al.’s study[6].
Ridge regression shrinks the coefficients of correlated
effects equally toward zero, but does not force them to
zero[7].
Unlike the properties of the ordinary least squares

estimator, the ridge regression estimator is biased when
l≠0. However, the advantage of ridge regression over
ordinary least squares is that ridge regression can be used
when (1) the number of markers exceeds the number of
observations, and (2) variables are correlated with each
other.
The estimator of ridge regression BLUP (RR-BLUP) is

β̂RR –BLUP ¼ Z#Zþ �2
e

�2β
Ip

 ! – 1

Z#ðy –�1nÞ (4)

where �2
e is the residual variance (varðeÞ ¼ In�

2
e) and �

2
β is

the variance of regression coefficients (varðβÞ ¼ Ip�
2
β).

β̂RR –BLUP is equal to β̂RR with l ¼ �2
e

�2
β

in Eq. (2). The

variance parameters can be estimated by restricted
maximum likelihood.
With RR-BLUP, marker effects are calculated first, then

GEBV of individual i is calculated as
Xp
j¼1

Zijβ̂j. VanRa-

den[8] deduced GBLUP which can obtain the same results
as RR-BLUP directly[9].
The GBLUP model is given as follows:

y ¼ �1n þ Zgþ e

Fig. 1 Implementation of genomic selection. To implement genomic selection, a reference population should be constructed, in which
individuals are genotyped and phenotyped. Based on the reference population, genomic estimated breeding values (GEBV) are obtained
by using statistical methods for candidate individuals only having genotypic information. Individuals are selected according to the rank of
their GEBV.
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where y is a n � 1 vector of the response variable; � is the
overall mean; 1n is a vector of n ones; g is the n � 1 vector
of additive genomic effects with distribution of Nð0,G�2

gÞ,
Z is the corresponding incidence matrix; and e is the vector
of random residuals with distribution of Nð0,D�2

eÞ. D is a
diagonal matrix. The G is the genomic relationship matrix,
which is usually constructed by the first method of
VanRaden[8]:

G ¼ ðM –PÞðM –PÞ#

2
Xn
j¼1

pjð1 – pjÞ

where M is a matrix of single nucleotide polymorphism
(SNP) genotypes for each individual, P is a matrix of 2
times the observed allele frequency of the second allele p at
locus j (pj). Ideally, allele frequencies in base population
should be used in the construction ofG. However, they are
not available in most practical situations. The observed
allele frequencies of genotyped individuals are commonly
used in studies and applications[10,11].
Legarra et al.[12] and Christensen and Lund[13] devel-

oped in parallel the basic theory for single-step genomic
selection. They derived an extended relationship matrix
(H) and its inverse involving both genotyped and non-
genotyped individuals:

H ¼
A11 þ A12A

– 1
22 ðG –A22ÞA – 1

22 A12 A12A
– 1
22 G

GA – 1
22 A12 G

" #

(5)

H – 1 ¼ A – 1 þ
0 0

0 G – 1 –A – 1
22

" #
(6)

where G is the aforementioned genomic relationship
matrix for the genotyped individuals, A11, A12 and A22
are partitions ofA, the numerator relationship matrix based
on pedigree, and subscripts 1 and 2 refer to non-genotyped
and genotyped individuals, respectively.
Using H – 1 in the mixed model equations, breeding

values of both genotyped and non-genotyped individuals
can be obtained simultaneously by solving the mixed
model equations. The single-step method does not perform
the works of multi-step methods, it is a unified approach to
use phenotype, pedigree and genomic information simul-
taneously for genomic prediction. The single-step method
overcomes drawbacks of multi-step methods, including
loss of information, inaccuracy and bias[14].
For simplicity of implementation of the single-step

method, G – 1 and A – 1
22 can be created explicitly. The

corresponding computing time is proportional to n3, where
n is the number of individuals with genotypes. With this
method, G – 1 and A – 1

22 can be computed for no more than

perhaps 150000 individuals due to memory and computing
time limitations[15]. However, the number of genotyped
individuals is growing rapidly. In dairy cattle, more than
1.6 million Holsteins has been genotyped in the USA
(Council On Dairy Cattle Breeding; https://www.uscdcb.
com/Genotype/cur_freq.html). Misztal et al.[16] suggested
calculating a sparse inverse of G using the algorithm for
proven and young (APY) animals, which is gaining
popularity. With APY, the genotyped individuals are
divided into a group of core individuals and a group of
noncore individuals. Then the approximate inverse of G is
set up with formulas

G – 1
APY¼

G – 1
cc þG – 1

cc GcnM
– 1
nn G#cnG

– 1
cc –G – 1

cc GcnM
– 1
nn

M – 1
nn G#cnG

– 1
nn M – 1

nn

" #

¼
Gcc

APY Gcn
APY

Gcn
APY M – 1

nn

" #

and

Mnn ¼ diagfgii – g#ciG – 1
cc g#cig

where subscript c refers to core individuals and subscript n
refers to noncore individuals, gii is the ith diagonal element
of Gcc and gci is the ith column of Gcn

[17].
It was demonstrated that the approximate value of G – 1

is very accurate when the number of core animals is 10k in
a population of Holstein[17]. APY has a linear computing
and memory cost for noncore animals[16]. Therefore, the
computing requirements are dramatically lowered. Oster-
sen et al.[18] recommended that the core group should
represent all generations and maximize the number of
genotyped offspring in regards of prediction accuracy and
convergence rate.
When the mixed model equations are solved with the

commonly used preconditioned conjugate gradient, A – 1
22 is

only used in A – 1
22 q, where q is a vector. As shown by

Strandén and Mäntysaari[19]:

A – 1
22 ¼ A22 –A21ðA11Þ – 1A12

where A11, A21, A12 and A22 are partitions of A – 1.
Therefore,

A – 1
22 q ¼ ½A22 –A21ðA11Þ – 1A12�q

¼ A22q –A21ðA11Þ – 1A12q

In calculation of t ¼ A21ðA11Þ – 1A12q, t1 ¼ A12q, t2 ¼
ðA11Þ – 1t1 and t ¼ A21t2 can be calculated sequentially.
The vector t2 is the solution of sparse equationsA

11t2 ¼ t1,
which can be easily solved with the sparse Cholesky
decomposition of A11 [20].
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2.2 Bayesian alphabet

Bayesian alphabet refers to a number of alphabets used to
indicate various Bayesian regression models, which differ
in their prior assumptions, while sharing the same
phenotypic model as Eq. (1)[21]. Bayesian inference
derives the posterior distribution from a prior and
likelihood function according to the Bayes theorem.
Estimates of marker effects are based on the posterior
distribution. Bayesian inferences are usually realized by
Gibbs sampling or Metropolis-Hasting algorithm.
Bayesian alphabet begins with BayesA and BayesB

where the data are modeled at two levels, i.e., the level of
data and the level of the variances of marker effects[3]. The
models at the level of data (including fixed effects and
random effects) are equal to that with RR-BLUP, except for
assumption of the variances of marker effects. With RR-
BLUP, markers share the same variance. However, with
BayesA, variances of marker effects are different from
each other, and they have the same prior distribution, i.e.,
the scaled inverted chi-square distribution, χ – 2ðv,SÞ, where
S is the scale parameter and v is the degrees of freedom.
BayesB further assumed a mixture prior distribution for
variances of marker effects. That is, �2

βj ¼ 0 with

probability π, and �2
βj ~χ

– 2ðv,SÞ with probability (1 – π).
Gianola et al.[21] pointed out the drawbacks of BayesA

and BayesB concerning the prior variances of marker
effects. With BayesA and BayesB, the shrinkage of marker
effects is strongly influenced by the hyperparameters.
Habier et al.[22] improved them with the proposed BayesCπ
and BayesDπ. BayesCπ assumes a common variance for
markers having effects and in BayesDπ the scale parameter
S is estimated instead of being specified by the users. The
proportion of markers with nonzero effect, π, is estimated
in both BayesCπ and BayesDπ.
After the proposal of single-step GBLUP, Fernando

et al.[23] presented the single-step Bayesian regression
models which combines genotyped and non-genotyped
individuals as in single-step GBLUP. The model is as
following:

y ¼ X*β* þWαþ Uεþ e

with

X* ¼ X1 A12A
– 1
22 ð – 1Þ

X2 – 1

" #
, β* ¼ β

�g

� �
,

W ¼ Z1A12A
– 1
22 M2

Z2M2

" #
and U ¼ Z1

0

" #

where subscript 1 and 2 refer to non-genotyped and
genotyped individuals, α is the vector of partial-regression
coefficients of the marker covariates, M2 is the matrix of
marker covariates of genotyped individuals, �g ¼ k#α

where k is the vector of expected values of marker
covariates for a random individual in the absence of
selection, and ε is used to account for deviations of
imputed marker covariates M̂1 ¼ A12A

– 1
22 M2 from actual

values for non-genotyped individuals. β is the vector of
fixed effects, X1 and X2 are the corresponding design
matrices of β, Z1 and Z2 are design matrices, A12 and A22
are partitions of A, and e is the vector of residuals.
The vector of predicted breeding values is

ĝ ¼ A12A
– 1
22 ð – 1Þ
– 1

" #
�̂g þ

A12A
– 1
22 M2

M2

" #
α̂ þ Uε̂

2.3 Least absolute shrinkage and selection operator

Least absolute shrinkage and selection operator (LASSO)
was proposed by Tibshirani[24] to overcome the limitations
of ordinary least squares. The only difference between
LASSO and ridge regression is that LASSO uses the

penalty function
Xp
j¼1

jβjj instead of
Xp
j¼1

β2j in ridge

regression. With this penalty function, LASSO sets some
coefficients to zero, but shrinks nonzero coefficients less
strongly than ridge regression. Therefore, LASSO per-
forms both variable selection and shrinkage of regression
coefficients. Several efficient algorithms have been devel-
oped for implementation of LASSO[7,25]. Park and Case-
lla[26] presented a Bayesian version of LASSO and
suggested its implementation using Gibbs sampling.
However, LASSO has some obvious shortcomings.

First, in a high-dimensional case (n<<p), LASSO can
select at most n nonzero regression coefficients[27].
Second, LASSO does not perform group selection, that
is, when variables in the group are pairwise correlated,
LASSO selects only one of them and this selection is
arbitrary[27]. Third, LASSO fails to consistently select this
variable in some circumstances[28]. For instance, LASSO
gives different results with and without implementation of
normalization of regression coefficients.
To overcome the first two drawbacks of LASSO, Zou

and Hastie[27] proposed Elastic Net (EN) by using a
weighted average of the penalty function in ridge

regression and LASSO, i.e., α
Xp
j¼1

jβjj þ ð1 – αÞ
Xp
j¼1

β2j

with 0£α£1. Thus, EN involves two tuning parameters,
l and a, where l is a penalty parameter as in Eq. (3).
Zou[28] presented adaptive lasso with penalty functionXp
j¼1

ω̂jjβjj, where ω̂j represents the adaptive data-driven

weights. Adaptive lasso overcomes the inconsistency of
LASSO.
In addition to the statistical methods presented above, a
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variety of other methods have been developed for GS,
including extensions of the above methods as well as new
strategies proposed for GS. Some examples of extensions
are TABLUP[29], pseudo single-step[30], single-step ran-
dom regression test-day model[31], EM-BayesA[32],
BayesD0, D1, D2 and D3[33], BayesR[34], and Bayesian
multivariate antedependence model[35]. Other approaches
include Nadaraya-Watson estimator[36], reproducing ker-
nel Hilbert space[36], support vector machine[37] and neural
network[38].
Among these models, GBLUP has been the most

commonly used, followed by Bayesian alphabet. Other
methods generally have limited advantage in terms of
prediction accuracy, and they are more complicated to
implement. As more and more individuals are genotyped,
the APY is a useful approach to approximate the inverse of
G in single-step GBLUP. In single-step Bayesian regres-
sion, the matrix inversion is not required. It also has the
advantage that computing time and memory increase
linearly with the number of observations and number of
markers. If the strategy for parallelization presented by
Fernando et al.[23] can be realized with computer clusters,
single-step Bayesian regression can also be implemented
in routine applications.

3 Prediction performance

3.1 Measures of prediction performance

Genomic selection was proposed to predict breeding
values of individuals. Therefore, the most important
measure of prediction performance is prediction accuracy.
Prediction accuracy has a linear relationship with genetic
response to selection. The higher the accuracy, the larger
the response to selection will be obtained.
In simulation studies where true breeding values (TBV)

are known, prediction accuracy is calculated as the
correlation between estimated breeding value (EBV) and
TBV. However, in empirical studies, TBV are not
available. The most commonly used variables are
phenotypes (original phenotype or phenotype adjusted
for fixed effects)[11,39], averages of offspring perfor-
mance[40] and EBV[39]. As these variables contain residual
effects, the estimated correlation is commonly divided by
the square root of heritability or the square root of the
average reliability of the validation individuals. EBV is not
recommended, because they are regressed toward the
mean depending on their accuracy, whereas the other two
variables are not[41]. When EBV have to be used, they can

be divided by their reliability calculated as r2 ¼ 1 –
SEP2

�2
a

,

where SEP is the standard error of prediction and �2
a is the

additive genetic variance.
Apart from prediction accuracy, other commonly used

measurements of prediction performance are mean squared
error (MSE) of prediction, the area under the receiver
operating curve (AUC) and bias. MSE is usually computed
as the average square of the difference between TBV (or its
alternatives) and EBV centered on zero. MSE assesses the
overall quality of prediction. The small MSE indicates the
estimator is precise and accurate. AUC is used in genomic
prediction of binary/disease traits. The larger the AUC, the
better the prediction. An AUC of 1 indicates the perfect
prediction. Bias is measured as the regression coefficient of
TBV (or its alternatives) on EBV. Patry and Ducrocq[42]

found that breeding values of preselected young sires and
their daughters were significantly underestimated in a
simulation study. Bias is important when a proportion of
GEBV is combined with other measurements to select
individuals[41].

3.2 Validation strategies in GS

In simulation studies where TBV is available, the
measurement of prediction, e.g., accuracy, is commonly
the average of correlation of TBV and GEBV of a certain
number of replicates[3,31,35].
In empirical studies, two alternative strategies are

employed. When accuracies of some individuals are very
high based on pedigree and phenotype, the training-testing
approach is used. Those highly accurate EBV can be used
as a perfect alternative to TBV. For example, in dairy cattle,
it is common that elite bulls have accuracies of 0.99. In this
situation, individuals are divided into training and test
population, usually based on a specific year[40,43,44]. In
validation studies, phenotypes collected after the specific
year are masked.
When the whole data set is small, k-fold cross validation

is a good choice[31,39,40]. In k-fold cross-validation,
individuals are partitioned into k subsets with nearly
equal size. One subset is retained as test set and the
remainder is used as training sets. Phenotypes of
individuals in the test set are masked. Breeding values of
these individuals are predicted and then used to measure
prediction performance. This process is then repeated k
times, ensuring each subset is used only once as a test set.
The value of k is usually 5 or 10. The number of subsets
should be sufficient to limit the sampling variance of
measures of prediction performance. Meanwhile, the size
of training set should be large enough to provide a
meaningful prediction[41].
To avoid inflated accuracy resulting from close relation-

ship (e.g., family relationship) between training and test
individuals[45,46], partitioning can be based on family,
strains and lines[31,47]. Saatchi et al.[48] proposed a way of
grouping individuals using k-mean clustering method
based on elements of pedigree numerator relationship
matrix (A matrix).
Besides k-fold cross-validation, repeated random sub-

sampling validation has also been investigated[35]. This
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approach randomly splits the whole data set into training
and test sets. Then genomic prediction is performed and
estimates of statistics are calculated based on the repeated
calculations.

3.3 Factors affecting accuracy of prediction

If a large number of QTL with small effects contribute to
the trait, the following formula can be used to derive the
upper bound of accuracy of prediction:

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Np

Np þMe=h2

s
(7)

where Np is the number of individuals in the training

population, h2 is the heritability of the trait, and Me is the
number of independent chromosome segments[49–51].
Three formulas were used to estimate Me [46]. The first
one was on the basis of Goddard et al.’s study[52]:

Me ¼ 1

varðG –AÞ, where G is the genomic relationship

matrix based on markers and A is the numerator relation-
ship matrix based on pedigree. The second one is Me ¼
2NeL=lnð4NeLÞ [51] and the third one is Me ¼ 2NeL

[9],
where Ne is the effective population size and L is the
genome size. The Me estimates using the first and the
second formula are similar to Me derived from Eq. (7)
when accuracy was available. The third equation gives an
inflated Me.
From Eq. (7), it has been demonstrated that the size of

training population, Me, and heritability of the trait affect
the accuracy of prediction. Equation (7) assumes that all
the genetic variance can be captured by markers. However,
this is not the case in real data applications. For example,
Mehrban et al.[53] found that 65% and 66% genetic
variances of backfat thickness and marbling scores were
captured by the 50k SNP chip with GBLUP model in beef
cattle. Meanwhile, genetic effects are assumed to be
additive in Eq. (7). However, there may be dominant and
epistatic effects. In addition, Eq. (7) does not take different
family relationships between training and test sets into
consideration. Therefore, the extent of LD between
markers and QTL, and genetic basis of the traits and
family relationship are also important factors influencing
the accuracy.

3.3.1 Linkage disequilibrium between markers and QTL

The effect of LD between markers and QTL can be
illustrated by the following facts:
(1) Higher-density genotyping increases accuracy. With

higher density of markers, the LD between markers and
QTL is expected to be greater. Therefore, higher accuracies
were achieved with higher-density SNP chips[31,54,55]. Due
to the relatively high cost of genotyping, many researchers

focus on imputation of genotypes as an alternative[56–58].
(2) Low accuracies in across-population prediction and

small gain in accuracy from multi-population prediction.
In Hayes et al.’s study[59], accuracies of GS for Jersey
cattle using a Holstein population as training data and vice
versa ranged from - 0.06 to 0.23 for five traits. Moreover,
they reported slightly increased accuracy of multi-popula-
tion prediction compared to within population prediction.
Hidalgo et al.[60] found similar results in across-population
genomic selection in pigs. They also found that the effect
of adding data from another population in the training set
depends on traits. High genetic correlation of traits from
different populations has a positive effect on prediction
accuracy. Moghaddar et al.[61]. found zero or negative
effect on accuracy of including distant breeds in the
training population. These results may be explained by the
difference in LD patterns, allele frequencies and QTL
among different populations[62].
(3) Decline in accuracy over generations. Simulation

and empirical studies show that accuracy of prediction
declines with the number of generations between training
and test population[11,31,63,64]. The decrease can be
explained by the breakdown of LD between markers and
QTL and less close family relationships between training
and test sets. Moreover, different statistical methods were
reported to have different persistencies in prediction.
The highest density of markers is in sequence data. It is

anticipated that genomic selection with sequence data will
directly use causal variants (no longer relying on LD) and
prediction across breeds and generations will become more
accurate. However, it cannot yet be unequivocally
concluded that genomic selection using sequence data
are a better choice. While some simulation studies showed
the advantage of GS with sequence data[65–67], the benefit
of sequence data was limited compared to medium/high
density markers in other simulation studies and real data
analyses[68–71]. Possible reasons for these limited benefits
are: (1) noise is added when there are errors in genotypes
resulted from sequencing[72] and imputation errors,
especially imputation error for low-frequency variants[73];
(2) it is hard to observe rare alleles which may contribute to
the trait in both training and test sets; (3) advantages of
sequence data depend on genetic architecture, the largest
increase was observed when all causal mutations were rare
and had low LD with SNPs in chips[72,74]; and (4) the
current GS models may not fit sequence data well, and
more appropriate models and more information (e.g.,
biological information) for GS are needed[69].

3.3.2 Genetic architecture of a predicted trait

Genetic architecture herein refers to (1) heritability,
(2) minimum allele frequency (MAF) of QTL, and (3) gene
or QTL effects.
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(1) Heritability. Heritability decides the amount of
information the collected raw phenotypes can provide,
then the accuracy of response variable of the training
population, and finally the accuracy of prediction of test
individuals. Heritability effects have been reported in
many studies[40,75].
(2) MAF of QTL. SNPs with similar MAF can

potentially have high LD, whereas LD between SNPs
with different MAF is low. The extend of LD between
SNPs and QTL depends on MAF of SNPs and QTL[76].
However, SNP chips are commonly designed to exclude
SNPs with very low MAF. Therefore, if MAF of QTL is
low, it is hard for SNPs on chips to have a strong LD.
Decreased accuracy with low MAF of QTL has been
observed in many studies[74,77,78].
(3) Gene or QTL effects. The commonly used models

assume gene effects are additive. As dominance and
epistatic interaction effects also contribute to genetic
variance in some traits[79,80], including those effects in
models may improve the prediction ability. Modeling
dominance effects further improved prediction accuracy in
some[79–81] but not all cases[79,82,83]. When information is
sufficient to estimate marker effects, increase in accuracy
may depend on the amount of genetic variance dominance
effects taken into account[79]. Several approaches have
been developed for modeling both additive and epistatic
effects[84–86], and both increases and decreases in accuracy
have been observed[87–89].
The effect of number of QTL on prediction accuracy is

relatively small for GBLUP[49,77,78]. However, accuracy of
Bayesian variable selection models decreases with the
increase in number of QTL[50,90]. Moreover, as assump-
tions and information used vary with models, no model
performs best in all situations. In general, Genomic BLUP
models perform almost as well as Bayesian models in most
real livestock scenarios and are simple to implement, and
they are more commonly used in applications.

3.3.3 Training population

The following two factors for training population affect the
prediction:
(1) The size of training population. Accuracy increases

with the size of the training set[3,91]. The size of the training
population should be large enough to accurately estimate
the marker effects. It is better if individuals in training sets
are less related to each other[92,93].
(2) Relationship between training and test sets. Many

studies have proved that closer family relationships
between training and test populations result in higher
accuracies[46,92–94]. Moreover, the size of training sets
affects the relative importance of family relationship and
LD on prediction[46,95]. That is, family relationship is more
important than LD in prediction with a small training set.
Rincent et al.[93] used a CDmean-based method to

optimize the sampling of the training population, con-
sidering both the relatedness between individuals within
the training population and the relationship between
training and test individuals.

4 Applications of GS

Since the proposal of GS, tremendous studies have been
performed to explore the theory and application of GS in
animals, plants and humans. GS was first implemented in
dairy cattle, and it has so far been most widely and
successfully used for this. According to Garcia-Ruiz
et al.’s study[96] and Taylor et al.’s study[97], the total
number of Holsteins genotyped in the USA has reached 1.2
million by 2016, and rates of annual genetic improvement
have increased by 50% to 100% for moderately heritable
yield traits and by 300% to 400% for lowly heritable fitness
traits (Fig. 2). In addition to the USA, many other countries
have also implemented GS in dairy cattle, including
Australia, Canada, China, Denmark, Germany, the Nether-
lands, New Zealand and Sweden. For other domestic
animals, GS has already been implemented in pig (e.g.,
PIC, DanAvl, and Genesus) and poultry industries (e.g.,
Hy-Line, Cobb-Vantress and Aviagen). Moreover, geno-
mic evaluation has now been implemented in sheep in
Australia and New Zealand, dairy sheep in France, goats in
France and the UK, and beef cattle (such as Angus,
Charolais, Limousin, and Simmental) in France, North
America and the UK.
Compared to domestic animals, GS is in its infancy in

crop science and forestry, although a lot of studies have
been conducted. The theory of GS can also be applied to
human disease risk prediction. Case studies have been
conducted on Celiac disease[98,99], type I diabetes[100],
coronary heart disease[101], breast cancer[102], bladder
cancer[103], skin cancer[104], and others. As Visscher[105]

predicted, personalized genetics and genomics will
become an integral part of health care and clinical practice
in future.

5 Future prospects

In recent years, both the theory and the application of GS
have been extensively explored. GS has been successfully
implemented in domestic animals, and it is fully expected
to be used for plant breeding and human disease risk
prediction. With the declining cost of genotyping, more
individuals and possibly all individuals in some popula-
tions will be genotyped. This may revolutionize GS
methods. Moreover, other types of data are becoming
more easily obtained, such as epigenome, transcriptome
and proteome. Integrating data from multiple layers is
expected to improve prediction performance as more

274 Front. Agr. Sci. Eng. 2017, 4(3): 268–278



information is utilized. Methods modeling interactions of
high-dimensional data need to be more fully developed to
achieve improved genomic prediction.
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