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Abstract Papilio paris butterfly wings were replicated
by a sol-gel method and a calcination process, which could
take advantage of the spatial features of the wing to
enhance their photocatalytic properties. Hierarchical
structures of P. paris-carbon-TiO2 (PP-C-TiO2) were
confirmed by SEM observations. By applying the
Brunauer-Emmett-Teller method, it was concluded that in
the presence of wings the product shows higher surface
area with respect to the pure TiO2 made in the absence of
the wings. The higher specific surface area is also
beneficial for the improvement of photocatalytic property.
Furthermore, the conduction and valence bands of the PP-
C-TiO2 are more negative than the corresponding bands of
pure TiO2, allowing the electrons to migrate from the
valence band to the conduction band upon absorbing
visible light. That is, the presence of C originating from
wings in the PP-C-TiO2 could extend the photorespon-
siveness to visible light. This strategy provides a simple
method to fabricate a high-performance photocatalyst,
which enables the simultaneous control of the morphology
and carbon element doping.
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1 Introduction

The most commonly used photocatalysts such as TiO2 with
a band gap of 3.2 eV show relatively high reactivity and
chemical stability under UV light. However, this part of the
UV light spectrum (l< 387 nm) accounts for only 4% of
the solar energy[1]. This greatly limits the application of
TiO2 photocatalyst in practice. To use solar irradiation or
interior lighting efficiently, many efforts have been made to

seek a photocatalyst with high reactivity under visible
light. One approach has been to dope nonmetal elements
(e.g., C, N and P) into TiO2, which could improve the
optical response of TiO2 under visible light excitation

[2–5].
Irie et al. have reported a carbon-doped anatase TiO2

powders generated by oxidizing commercial TiC powders,
and the products showed photocatalytic activities for IPA
decomposition under visible light (400–530 nm) irradia-
tion[6]. This occurred because carbon occupied the oxygen
sites and the substitution caused the absorbance edge of
TiO2 to shift to the higher wavelength region.
Moreover, researchers have found that the hierarchical

structure is a significant feature contributing to high
photocatalytic performance[7,8] because it can provide
more active sites and enhance the capture efficiency of
incident light[9]. In fact, natural materials possess an
astonishing variety of hierarchical structures, which are not
easily synthesized artificially. Song et al. fabricated an
artificial N-doped ZnO photocatalyst by copying the
elaborate architecture of green leaves through a two-steps
infiltration and the N contained in the leaves self-doped
into the products[10]. The artificial N-doped ZnO showed
superior photocatalytic activity in the visible light region
and excellent methylene blue degradation under solar
energy irradiation. In addition to green leaves, there
are many biotemplate materials in nature, such as
bamboo, butterfly wings, cotton fibers, kelp, seaweed
and wood[11–14]. Among these natural biotemplates,
butterfly wings with uniform architecture often display
special properties, such as high absorption range to visible
light[13]. Furthermore, there are abundant biogenic C
elements preserved in the wings.
Thus, we designed a simple method by using Papilio

paris butterfly wings as biotemplates, coating with TiO2

films and calcination in air to fabricate a P. paris-carbon-
TiO2 (PP-C-TiO2) photocatalyst. In addition, the rhoda-
mine B (RhB) photodegradation of the product was
compared with that obtained with a measured amount of
pure TiO2.
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2 Materials and methods

2.1 Materials

A P. paris butterfly sample was borrowed from Shanghai
Natural Wild Insect Kingdom Co., Ltd. (Shanghai, China).
P. paris butterfly wings were pretreated and washed with
anhydrous ethanol, and dried in air for 12 h. All chemicals
supplied by Shanghai Boyle Chemical Company (Shang-
hai, China) were of analytical reagent-grade quality and
used without further purification. Deionized water was
used throughout the study.

2.2 Synthesis

Moderate diethanol amine was added to a solution of a
mixture of butyl titanate and anhydrous ethanol (molar
ratio 17:1) with magnetic stirring. Subsequently, adequate
85% (w/w) ethanol aqueous solution was added dropwise
to the solution with continuous stirring. The solution was
magnetically stirred for> 3 h until the Tyndall phenom-
enon could be seen and a TiO2 sol was obtained. The wings
were carefully immersed into the TiO2 sol for 20 h. The
treated wings were then washed with deionized water and
dried overnight at room temperature. The synthesis process
is described in Fig. 1. The treated wings were calcined
in air at 550°C for 3 h with a constant heating rate of
1°C$min–1 to crystallize the TiO2 and control the carbon
content from the organic templates. The carbon content in
the sample was about 0.6%. For comparison, pure TiO2

was prepared through the same sol-gel method and
calcination process without the wings.

2.3 Characterizations

The morphologies of the samples were characterized by
field-emission scanning electron microscopy (FE-SEM,
JSM-7500F, JEOL, Tokyo, Japan) operating at 12.5 kV in
combination with energy dispersive spectroscopy (X-Max,
Oxford Instruments, Abingdon, Oxfordshire, UK). The
crystal structure of the as-prepared product was investigated
by X-ray diffraction (D8 Advance, Bruker, Billerica, MA,
USA) with Cu Kα radiation of wavelength l = 1.5418 Å,
using a step scan mode with the step size of 0.02° and a
scan rate of 4°$min–1, at 40 kVand 40 mA ranging from 5°

to 80°. Further evidence for the composition of the product
was inferred from the specific surface area of the prepared
products measured by the Brunauer-Emmett-Teller (BET)
method based on N2 adsorption at the temperature of liquid
nitrogen using a 3H-2000PS2 unit (Beishide Instrument
ST Co., Ltd, Beijing, China). Optical properties were
characterized by the UV-vis diffuse reflectance spectro-
scopy (TU-190, Beijing Purkinje General Instrument Co.,
Ltd., Beijing, China) equipped with an integrating sphere
attachment, using BaSO4 as the reference. Thermogravi-
metric analysis was carried on using a simultaneous
thermal analyzer (SDT Q600, TA Instruments, New Castle,
DE, USA) in a temperature range of 25–700°C under a
dynamic N2 atmosphere.

2.4 Photocatalytic test

For photocatalytic tests, a measured quantity of sample
was dissolved in 100 mL aqueous solutions of RhB in glass
beakers. The concentration of RhB was 10 mg in 1 L of
H2O. At first, the solution was stirred continuously in the
dark for 60 min to establish adsorption-desorption
equilibrium among the photocatalysts and dye solution,
then this solution was illuminated with visible light. A 500
W xenon lamp with the wavelength range of 425 nm was
used as light source and the intensity of the incident visible
light on the solution was 110 W$m–2. The glass beaker was
then placed in front of the lamp with continuous magnetic
stirring. Five ml of solution was collected and centrifuged.
The UV absorption measurements were then used to
observe the photodegradation at specific time intervals.
The absorption peaks for RhB were observed at 553 nm.
Stability of the material was measured in the solution with
the above steps repeated four times.

3 Results and discussion

SEM images of the original butterfly wings, TiO2-treated
wings and PP-C-TiO2 are presented in Fig. 2. The wings
had a well-organized porous framework and a hierarchical
architecture assembled in ridges and pillars (Fig. 2a). After
treatment with TiO2 sol, the pores were all filled (Fig. 2b).
Through the calcination in air, the PP-C-TiO2 faithfully
replicated the well-organized porous hierarchical architec-
ture of the natural wings (Fig. 2c).

Fig. 1 Synthesis of TiO2-replicated Papilio paris wings (PP-C-TiO2)
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The distributions of C, O and Ti in the PP-C-TiO2 are
presented by element mapping in Fig. 3. The C present
came from the wing exoskeleton, whereas the O and the Ti
were mainly from the added TiO2. Element mapping also
indicated that Ti and O were uniformly distributed after
calcination in air.

Figure 4 shows the X-ray diffraction patterns of the
TiO2-treated wings, the pure TiO2 and the PP-C-TiO2. The
diffraction peaks at 28.4° (Fig. 4a, Fig. 4b) belong to the
(210) crystal planes of TiO2. The diffraction peaks of the
pure TiO2 are well indexed to the standard diffraction
pattern of anatase phase TiO2 (JCPDS file no. 21-
1272)[15,16]. After calcination in air, the diffraction peaks
of the PP-C-TiO2 (Fig. 4c) were the same as the pure TiO2

(Fig. 4b). The curves in Fig. 4b and Fig. 4c show the peaks
center at 2q = 25.2°, 38.0°, 47.8°, 54.2°, 55.3°, 62.5°,
68.8°, 70.5° and 74.9°, which agrees with the (101), (004),
(200), (105), (211), (204), (116), (220) and (215) crystal
planes of anatase TiO2.
BET analysis was conducted in order to understand the

effect of the wings on the porous structure of the samples.
Figure 5 shows the N2 adsorption-desorption isotherms of
the pure TiO2 and the PP-C-TiO2. It could be seen the

curve for the PP-C- TiO2 exhibits a hysteresis loop, which
is attributed to type IV isotherms and the representative of
mesoporous materials, indicating the presence of meso-
pores (2–50 nm)[17,18], while the curve for the pure TiO2

Fig. 2 SEM images of original Papilio paris butterfly wings (a), TiO2-treated P. paris wings (b), and TiO2-replicated wings (PP-C-TiO2) (c)

Fig. 3 SEM images (a) and C (b), Ti (c) and O (d) element
mappings of the TiO2-replicated Papilio paris wings (PP-C-TiO2)

Fig. 4 X-ray diffraction patterns of TiO2-treated butterfly
wings (a), pure TiO2 (b), and TiO2-replicated Papilio paris
wings (PP-C-TiO2) (c)

Fig. 5 N2 adsorption-desorption isotherms of pure TiO2 (a) and
TiO2-replicated Papilio paris wings (PP-C-TiO2) (b)
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shows a type III isotherm, which indicates that the
absorption property of the material is weak.
BET surface areas, pore sizes and pore volumes of the

pure TiO2 and the PP-C-TiO2 are presented in Table 1.
From these data, it is clear that the preparation of TiO2 in
the presence of the wings after calcination produced a
significantly higher (up to 1.7 times) surface area than the
pure TiO2. The pure TiO2 had a relatively low surface area
of 29.7 m2$g–1. The sample prepared in the presence of the
wings, SBET is higher than 50 m2$g–1. That is, the method
used seems to have produced a certain heterogeneous
system with respect to the wings, in terms of the surface
properties (e.g., surface area and pore size distribution) of
the PP-C-TiO2. Thus, because of its large surface area, the
PP-C-TiO2 provides more photocatalytic reaction sites for
the adsorption of reactant molecules and increases the
efficiency of the electron-hole separation, so the photo-
catalytic activity of the PP-C-TiO2 is enhanced.

To investigate the light absorbance of the samples, the
UV-vis diffuse reflection spectra of the pure TiO2 and the
PP-C-TiO2 were obtained (Fig. 6a). For the pure TiO2,
there was prominent adsorption below 350 nm, whereas
for the PP-C-TiO2 there was a much higher absorption in
the region 380–500 nm, indicating the absorption of PP-C-
TiO2 is significantly red-shifted to visible wavelengths,
due to the presence of C. Moreover, it is worth noting that
the PP-C-TiO2 heterostructures with absorptions in the
visible region may indicate a greater potential for
photocatalysis. To calculate valence band position, the

optical band gap was determined by the following Tauc
equation[19]:

ðαhvÞn ¼ Aðhv –EgÞ
where A = constant, hn = light energy, Eg = optical band
gap energy, α = measure absorption coefficient, and n = 0.5
for indirect band gap. Given that TiO2 has an indirect band
gap, the y axis of the Tauc plot is (αhn)1/2 for TiO2

[20]. In
Fig. 6b, the extrapolation of the Tauc plot to x intercepts
gives optical band gaps of 3.02 eVand 2.23 eV for the pure
TiO2 and the PP-C-TiO2, respectively. Therefore, the
conduction band and valence band of the PP-C-TiO2 are
more negative than the corresponding bands of the pure
TiO2. It is possible for the electrons to migrate from the
valence band to the conduction band upon absorbing
visible light, which could lead to the visible light activity of
the PP-C-TiO2.
To test the photodegradation abilities of the samples,

the photocatalytic degradation of RhB was measured.
Figure 7a shows the relationships between concentration
ratio (C/C0) and time for RhB degradation with 50 mg pure
TiO2, 50 mg PP-C-TiO2 and irradiation without photo-
catalysts. The PP-C-TiO2 took 90 min to degrade phenol.
However, the pure TiO2 could not degrade RhB. Figure 7b
shows the first order rate constant k (min–1) of the pure
TiO2 and the PP-C-TiO2 for RhB, which was calculated by
the following first order equation[21,22]:

lnðC0=CÞ ¼ kt

where C0 is the initial concentration of the dye in solution
and C is the concentration of dye at time t. This shows the k
value of 0.02614 min–1 for RhB in the case of the pure TiO2

as compared to the value of 0.00039 min–1 in the case of
the PP-C-TiO2. This indicates that the PP-C-TiO2

possesses photodegradation abilities.
PP-C-TiO2 as a photocatalyst can easily be recycled by a

simple filtration. After four cycles for the photodegradation
of RhB, the catalyst did not exhibit any significant loss of

Table 1 Structural parameters of pure TiO2 and TiO2-replicated

Papilio paris wings (PP-C-TiO2)

Sample
BET surface area

/(m2$g–1)
Pore size

/nm
Pores volume
/(cm3$g–1)

Pure TiO2 29.7 11.20 0.08

PP-C-TiO2 51.9 9.05 0.12

Fig. 6 (a) UV-vis absorption spectra of the pure TiO2 and TiO2-replicated Papilio paris wings (PP-C-TiO2); (b) the evaluation of the
optical band gap using the Tauc plot.
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activity (Fig. 8), confirming that the PP-C-TiO2 is not
photocorroded during the photocatalytic oxidation of the
dye pollutant. Therefore, this stable photocatalyst show a
great potential for practical applications.

4 Conclusions

A sol-gel method and a calcination process were combined
to fabricate heterostructured C/TiO2 photocatalysts from
P. paris butterfly wings. The elaborate architecture of the
wings was copied by immersing the wings into the TiO2

sol, followed by calcination in air to remove the wings.
Moreover, the C contained in the wings was self-doped
into the products. These P. paris-C-TiO2 exhibited high
potential for application as a visible light photocatalyst for
degradation of organic pollutants. This is ascribed to the
hierarchical structures and the higher surface area that

provide more reactive sites for photocatalysis. Also, the C
dopant decreases the band gap of TiO2 and shifts the
optical absorption to the visible light region. This work
provides a pathway for constructing high-performance
materials and efficiently utilizing of solar energy.
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