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Abstract During the last few decades, there have been an
increasing number of studies on grassland ecology in
China, involving the classic ecology concepts or theories
and the applicable ecological principles of grassland
conservation or management. This paper reviews the
main progress in the following aspects. (1) Research on
grassland species adaptation and resistance, population
dynamics and foraging behavior, and biodiversity and
community stability. (2) Research on managed grassland
ecosystems (grassland grazing ecology) including grazing
effects on grassland ecosystem function and foraging
behavior by large herbivores. (3) Global climate change
and grassland processes and functioning. (4) Applied
research on grassland restoration and ecosystem health
assessments such as vegetation restoration, restoration of
ecosystem functioning, and assessment methods. There
have been significant advances in grassland ecology,
including the functions of ecosystem biodiversity, the
ecological stoichiometry mechanisms affecting grassland
community stability, grazing regulation of plant diversity
and nutrient cycling. Grassland ecologists have succeeded
in making these advances through observational, experi-
mental and theoretical studies. Nevertheless, there are still
significant challenges for the grassland ecology research,
including understanding of grassland spatial processes,
grassland grazing and multi-functionality, integrated
effects of global climate change across grassland areas,
as well as the ecological methodology and experimental
techniques in grassland ecology.
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1 Introduction

The role of ecology in society has increased dramatically in
importance over the past century because it provides

essential information and valuable insights that help us
better understand our world. As one of the key areas of
ecological study, grassland ecology, referring to the
relationships between organisms and their habitats within
grassland ecosystems, focuses on the interactions between
plants, animals, microbes and soils, and their effects on
process and function, from the gene to the population and
community levels to the global scale. In recent decades,
trends in basic ecological research, such as the theories of
plant competition, biodiversity conservation, animal fora-
ging behavior, and nutrient cycling and trophic cascading,
originate from grasslands due to their large area that covers
about 40% of total land, their moderate ecosystem
complexity, and their ease of manipulation manipulative
priority compared to forests, swamps and deserts[1].
Grasslands are considered the largest managed ecosystem
on earth and are exposed to the combined effects of
frequent human activities and ongoing global climate
change. The intensive grassland utilization through grazing
and mowing during recent decades imposes particularly
significant impacts on the productivity of vegetation,
composition and biodiversity, and in turn alters the edaphic
physicochemical properties, consequently influencing
systematic processes and functions.
Grassland ecology was of practical interest in the early

1950s although at that time there was limited research on
general ecological aspects in China (Fig. 1). Most work on
grassland ecology had concentrated on surveying or
investigation of grassland vegetation, including flora,
distribution, community composition and productivity, in
the north-east and in Inner Mongolian. A pioneering study
of the vegetation in parts of Heilongjiang Province
provided quantitative vegetation analysis for plant com-
munities or assemblages associated with different soil
types[2]. This was followed by several studies on the
grassland vegetation in meadow steppes and desert
steppes[3–6]. In the early grassland ecology studies,
researchers focused on the plant types and distribution
patterns as related to fodder productivity, but paid little
attention to the impact of environmental variables such as
soil properties and herbivore grazing on grasslands.
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From the 1980s onwards, grassland ecology developed
with more researchers engaging in ecology in China, and
most importantly, grassland scientists began to explore the
grassland as a functional system (Fig. 1), i.e., an
ecosystem. Given that one universal feature of all
ecosystems is the interaction of autotrophic and hetero-
trophic components across the ecological hierarchy, the
linkages between plants, large herbivores, invertebrates,
soil animals and microbial communities and to their
habitats, including changes in nutrients, microclimate and
physicochemical properties, were often selected as
research topics for grassland ecosystems. In the dry
steppes, the relationships between biomass and photo-
synthesis of dominant species (e.g., Leymus and Stipa) and
precipitation, air temperature and soil moisture or
nutrients, and the population dynamics and diet selection
of rodents (voles) and grasshoppers, and soil enzyme
activity and microbe biomass were measured and ana-
lyzed[7–9]. The effects of grazing by livestock and rodents,
such as pika and voles, were assessed in the alpine
meadows[10]. There were two prominent focuses for
grassland ecology research: (1) conducting long-term or
fixed experiments in the north-east (meadow steppe), Inner
Mongolia (dry and desert steppe) and Qinghai–Tibetan
Plateau (alpine meadow), and (2) making observations or
experiments on ecological processes such as energy flow
(plant-animal), and nutrient (C, N and P) and water
cycling. The greatest achievements in grassland ecology
can be attributed to the above experimental platforms and
increasing research funding from the Chinese government
(including general or major grants).
Since the beginning of the 21st century, there has been

significant expansion in grassland ecology research in
China. Many studies on grassland ecology have addressed
the scenarios of global climate change and human
activities. This involves the study of long-term field
manipulative experiments, including warming, nitrogen
deposition, precipitation alteration, and livestock grazing,
conducted on various steppes. The focus of these studies

has also become much wider, ranging from species
adaptive and functional traits, interrelationships between
the same or different taxon, and multi-trophic levels (i.e.,
plant-plant, plant-animal and plant-animal-microbe), and
biodiversity, productivity and their relationships. The work
on grassland structural features has been strongly related to
grassland functions such as nutrient and water cycling
(Fig. 1), e.g., carbon sequestration, biodiversity main-
tenance and system stability. The established and devel-
oping hypotheses or theories, such as relationships among
biodiversity-productivity-stability, optimal foraging the-
ory, ecological stoichiometry, allometry theory, and food
web and trophic cascading, have been frequently tested
and refined for grassland ecosystems[11–14], indicating that
grassland scientists have contributed substantially to the
development of ecology.

2 Classic ecological research in grasslands

Many current studies in grassland ecology still focus on the
long-established ecological approaches from individual
and population, through to community and ecosystem,
involving species adaptation and resistance, population
dynamics and foraging behavior, as well as biodiversity
and community stability.

2.1 Species adaptation and resistance

Plant growth and yield in many grassland ecosystems of
the world are limited by a wide variety of biotic stress
factors, such as salinity, drought, extreme temperature and
metal toxicity. Over the past two decades, there have been
several key advances in research in China on plant
adaptation and resistance.
In grasslands of north-east China, organic acids are

important in the physiology of the alkali-tolerant halo-
phyte, Chloris virgate. Under alkali stress, Na+ sharply
increased, and NO3

– and H2PO4
– decreased in shoots,

Fig. 1 Outline of the stages in research on grassland ecology in China
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which caused a severe deficit of negative charge[15].
Achnatherum splendens has an enrichment of salt stress-
related GO category proteins, including those having
oxidation-reduction, ion channel transporter and
transcription factor activity[16]. For Suaeda maritima,
Wang et al.[17] proposed two distinct low-affinity Na+

uptake pathways: the first pathway is insensitive to TEA+

or Cs+, but sensitive to Ba2
+ and mediates Na+ uptake

under low salinity; the second pathway is sensitive to
TEA+, Cs+ and Ba2

+, and mediates Na+ uptake under
higher external salt concentrations[17]. The grass, Pucci-
nellia tenuiflora, has stronger selectivity for K+ over Na+,
allowing it to maintain significantly lower tissue Na+ and
higher K+ concentration than that of wheat under short- or
long-term NaCl treatments[18].
Cold stress is one of the most serious plant growth

stresses in the world[19]. Liu et al[20]. found that
brassinosteroids can have a positive effect in the alleviation
of oxidative damage caused by reactive oxygen species
overproduction through enhancing antioxidant defense
system, resulting in improving the tolerance of Chorispora
bungeana suspension cultures to chilling stress. Compara-
tive transcriptome analysis suggests that cold
acclimation is not a major chilling tolerance mechanism
of C. bungeana. Activation of protein phosphorylation
and ubiquitination may confer chilling tolerance to
C. bungeana in a more rapid and flexible way than cold
acclimation[21]. Xu et al.[22,23] found that moderate water
deficits had positive effects on stomatal number of
Leymus chinensis, but more severe deficits led to a
reduction, described in a quadratic parabolic curve. In
north-west China, ecologists found the two major adaptive
strategies used by Zygophyllum xanthoxylum against arid
environments are absorbing a great quantity of Na+ from
low-salinity soil which is efficiently transported to the
leaves and maintaining the stability of K+ concentration in
those leaves[24]. For grass pea (Lathyrus sativus), the
accumulation of osmoprotectants and the improvement of
oxidation resistance is the mechanism that enables higher
drought tolerance of grass pea than field pea[25].

2.2 Population dynamics and foraging behavior

Plant population ecology is one of the most important
branches of ecological research. During the past 40 years,
the basic theory and research methodology in plant
population ecology has developed rapidly in China. Plant
modular ecology is the study of the interactions among
plant modular organisms and the population statistics
characteristics of plants under different environments[26].
In Songnen grasslands in north-eastern China, Yang and
Zhang[27] investigated the seasonal dynamics of vegetative
propagation of L. chinensis, a perennial rhizome grass in
the region. They found that L. chinensis grass could
continuously vegetatively propagate during the whole
growing season (from May to August). Yang et al.[28]

further investigated the age structure of this perennial grass
and found that most of the tillering nodes of L. chinensis
were four-year old, with some of five-year old. Finally,
Yang and Li[29] quantified the ecological plasticity of the
seedheads of L. chinensis and found that either the length
of seedheads or number of spikelets of this grass varied
significantly both within and between years.
Seed is the reproductive body of spermatophytes, and

resource devotion to its production has a direct effect on
the offspring fitness and the renewal of vegetation
communities. In Korqin sandland, Inner Mongolia, eight
species, e.g., Clinelymus dahuricus, Cleistogenes squar-
rosa, Pappophorum boreale, had a germination rate of
over 80%, but four species, e.g., Echinochloa hispidula
and Hemarthria compresa, had a rate of less than 10%[30].
In semi-arid grasslands of northern China, the seedling
emergence of L. secalinus was affected by the amount and
frequency of monthly precipitation and depth of burial, and
emergence decreased with reduced frequency for the same
precipitation amount[31]. In dune ecosystems, the size of
the aerial seed bank was higher than that of the soil seed
bank throughout the growing season. Seed release was
positively related to wind velocity[32].
Rhizomes are important for many processes, including

asexual reproduction, communication and resource sharing
between ramets, and foraging in heterogeneous environ-
ments. Clonal plants are commonly more tolerant to
grazing than co-occurring non-clonal plants in inland
dunes. Compared with the control, heavy clipping greatly
increased the relative growth of Bromus and Psammo-
chloa, but decreased that of Artemisia and Astragalus[33].
Under moderate clipping, rhizome connection significantly
improved the performance of Psammochloa, but not that of
Bromus. Heavy clipping reduced ramet, leaf and biomass
density in the disconnected plots of both species, but such
negative effects were negated or greatly ameliorated when
the rhizomes were connected[34]. These results suggest
that clonal integration is an additional compensatory
mechanism for clonal plants and may be important for their
long-term persistence in the heavily grazed regions in
northern China. In sandland environments, plants experi-
ence substantial variation in growing conditions during the
dune fixation process, with high sand mobility in early
stages and denser vegetation cover in later stages. Li
et al.[35] studied the changes in demography of the
dominant shrub, Artemisia ordosica, at three stages of
dune fixation: semi-fixed dunes, fixed dunes and fixed
dunes covered with microbiotic crust. They found that
plant growth and reproduction decreased strongly as dunes
became more fixed. Reduction in plant height occurred
quite often, particularly in the fixed dunes with microbiotic
crust. It is hypothesized that the benefits of clonal
integration can vary depending on whether patchiness is
reciprocal or coincident, and that clonal species experience
greater benefits from integration when qualitative patterns
of resource heterogeneity are more like those likely to
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occur in their habitats. To test these hypotheses, He
et al.[36] grew pairs of connected ramets of Cynodon
dactylon and Potentilla reptans under high and low levels
of light, water and soil nutrients, and measured growth and
physiological traits of the plants. Consistent with the
hypotheses, they found that connection between ramets in
contrasting patches increased final dry mass of Cynodon by
30% compared with connection between ramets within the
same type of patch when resource patchiness was
coincident, whereas connection decreased mass by 60%
when patchiness was reciprocal.

2.3 Biodiversity and community stability

Ecosystem structure, functioning and stability have been a
focus of ecological and environmental sciences during the
past decades. The mechanisms underlying their relation-
ship, however, are not well understood. Based on a 24-year
study of the Inner Mongolia grassland, Bai et al.[11]

presented three key findings concerning ecosystem
stability and compensatory effects in the grassland. Firstly,
that January–July precipitation is the primary climatic
factor causing fluctuations in community biomass produc-
tion; secondly, that ecosystem stability increases progres-
sively along the hierarchy of organizational levels; and
finally, that the community-level stability seems to arise
from compensatory interactions among major components
at both species and functional group levels. This study
provided new insights for better management and restora-
tion of the rapidly degrading Inner Mongolia grassland.
Bai et al.[37] further investigated the spatial and temporal
patterns of ANPP (aboveground net primary production)
and RUE (rain use efficiency) and their key driving factors
based on a long-term data set from 21 natural semi-arid and
arid ecosystem sites across the Inner Mongolia steppe
region in northern China. Their results showed that, with
increasing mean annual precipitation, ANPP increased
while the inter-annual variability of ANPP declined, plant
species richness increased and the relative abundance of
key functional groups shifted predictably, and RUE
increased in space across different ecosystems but
decreased with increasing annual precipitation within a
given ecosystem. These results clearly indicate that the
patterns of both ANPP and RUE are scale dependent, and
the seemingly conflicting patterns of RUE in space vs. time
suggest distinctive underlying mechanisms, involving
interactions among precipitation, soil N and biotic factors.
Also, while their results supported the existence of
common maximum RUE, they also indicated that its
value could be substantially increased by altering resource
availability, such as adding nitrogen.
The mechanisms underlying the relationships among

ecosystem structure, functioning and stability have been a
focus of ecological and environmental sciences during the
past two decades. Based on comprehensive studies on
Inner Mongolia grassland, Yu et al.[13] found that species-

level stoichiometric homeostasis was consistently and
positively correlated with dominance and stability on both
2-year and 27-year temporal scales, and across a 1200-km
spatial transect. At the community level, stoichiometric
homeostasis was also positively correlated with ecosystem
function and stability in most cases. Thus, homeostatic
species tend to have high and stable biomass; and
ecosystems dominated by more homeostatic species have
higher productivity and greater stability.

3 Research on managed grassland
ecosystems––grazing ecology

Livestock grazing is one of the most prevalent land uses of
grassland. Currently, a majority of grasslands are expe-
riencing overgrazing in China, which severely threatens
productive and ecological function of grasslands. There-
fore, grassland grazing ecology is one of the key fields of
research in grassland ecology. Over the past 30 years,
extensive observational and empirical studies on livestock
grazing effects on structure and function of grassland
ecosystem have been conducted in China. We searched
peer-reviewed journal articles published during 1985–
2017 on livestock grazing effects using Scopus and China
Knowledge Resource Integrated Database. A total of 1704
papers were found, with 1023 papers published in Chinese
periodicals and 681 papers in international periodicals. The
total number of published paper in grazing ecology
increased substantially every year since 1985 (Fig. 2).
For example, only five studies on grassland grazing effects
were published during 1985–1990 while a total of 741
were published during 2010–2015. These studies involved
grazing-induced changes in vegetation characteristics, soil
properties, soil biota and other trophic level biota (e.g.,
insects), and also productivity, nutrient cycling and
grassland C-fixation function. Moreover, many factors
were considered, including grazing intensity, grazing time

Fig. 2 Number of published papers on livestock grazing
effects on grassland structure and function with different
keywords every 5 years since 1985
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and season, grazing history, rotational grazing regime, and
interactive effects of grazing and the other climate factors
(Fig. 3).

3.1 Livestock grazing effects on grassland ecosystem
structure

Effects of livestock grazing on vegetation characteristics
was the focus, especially in early research stage (Fig. 2),
because vegetation is not only the basis for grassland
ecosystem function and also the component most directly
disturbed by livestock grazing. Over the past 30 years, a
large number of studies quantitatively evaluated the effects
of different grazing intensities on grassland plant composi-
tion and diversity, which have considerably improved our
understanding of grazing effects. In all studies, overgrazing
has been consistently shown to negatively affect plant
diversity across all the grassland types[38,39]. Based on
intermediate disturbance hypothesis, moderately grazing
also has been demonstrated in some studies to contribute to
sustain and even improve plant species diversity[40,41]. In
contrast, a recent study found a U-shaped relationship
between diversity an grazing intensity suggesting that diet
selection of grazing animals is an important factor shaping
the relationship between diversity and grazing intensity in
semi-arid grasslands[42]. A recent review synthesized 61
studies on grazing effects on plant diversity of alpine
grassland in the Qinghai–Tibetan Plateau, and concluded
that grazing contributes to greater plant species diversity,
but reduced aboveground biomass[43]. It remains con-
troversial whether moderate grazing benefits grassland
plant diversity. Plant functional traits are found to be
closely related to plant function[44]. Recent studies have
focused mostly on leaf-level traits or community-level
weighted traits to predict species responses to
grazing[45,46].
Livestock grazing can also have important influences on

belowground organisms as well as on vegetation[47,48].
Since 2000s, with the development of molecular

technique, more studies have begun to investigate changes
in soil microbe after grazing disturbance[49,50]. A recent
study deeply analyzed effects of grazing on soil microbial
functional gene[51], and found that grazing increased
expression of N mineralization and nitrification genes but
decreased denitrification and N-reduction genes in Tibetan
alpine grassland, which will potentially regulate soil N and
C cycling[52]. Furthermore, the mechanisms whereby
grazing effects the soil microbial community have also
begun to be explored in recent studies. For example, Liu
et al.[53] for the first time disentangled the pathways of
livestock grazing effects on soil microbes through
defoliation and trampling, and found trampling increased
the abundance of fungi and AMF, and trampling with
defoliation further decreased the abundance of soil
microbes. We found only a single study has examined
the response of soil fauna to livestock grazing in China[54].
Controlling outbreaks of grasshoppers in grassland

ecosystems has been the subject of particular research
emphasis in China. However, relatively fewer studies have
investigated effects of grazing on grassland insect com-
munities, such as grasshoppers (Fig. 2). Most studies on
grazing effects on grasshoppers were conducted during the
period 1994 to 1996. These studies showed that livestock
grazing-induced changes in the plant community can
directly affect grasshopper species composition and
community structure[55–58]. In the last 5 years, some
significant progress has been made in understanding the
effects of grazing on insect communities. An important
study of the Inner Mongolia grassland found that heavy
livestock grazing could promote locust outbreaks by
lowering plant nitrogen content[59]. Zhong et al.[60] also
found that there was a positive interaction between sheep
and grasshoppers in meadow steppe of north-east China,
which further indicated that overgrazing will increase
grasshoppers abundance. Furthermore, it was found that
grazing by large herbivores can affect insect diversity by
modifying plant structural heterogeneity[61]. Recently,
there is increasing concern that herbivore grazing can
interact with climate factors (such as precipitation) to affect
insect community at a landscape scale[62,63]. These studies
indicated that appropriate land use management practices
would be beneficial for reducing outbreaks of the dominant
pest grasshopper in Inner Mongolia, and different manage-
ment approaches are necessary depending on the average
annual precipitation[62,63] and plant diversity before
grazing[64].

3.2 Grazing effects on grassland ecosystem function

Productivity is an important indicator for ecosystem
function. Most studies found that continuous grazing
decreased aboveground and belowground biomass and net
primary productivity, and the effects were strengthen at
greater grazing intensities[65–67], probably because con-
tinuous grazing reduced the source size of carbon-

Fig. 3 Number of published papers on livestock grazing
with different keywords effects on grassland every 5 years
since 1985
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assimilating organs and intensified the re-translocation of
root carbohydrates to shoot meristems[68]. Some studies
showed that aboveground biomass was increased by
intermediate grazing compared to light and heavy grazing,
while belowground biomass was decreased[69,70]. In
addition, compared with continuous grazing, it was
found that rotational grazing can increase the aboveground
biomass and productivity of grassland vegetation[71,72].
Abundant evidence indicates that grazing affects plant

productivity[41,62,73–75]. Relatively few studies in China,
however, have examined effects of grazing on nutrient
cycling, which determines plant community composition,
production rates, levels of biodiversity, and the trophic
structure of ecosystems[76,77]. Grazing may increase or
decrease nutrient cycling by feeding preferentially on
different forage species, which produce relatively fast or
slow decomposing plant litter, or by direct input of urine
and faces into the system[78,79]. Shan et al.[80] found in the
Inner Mongolia grassland that the effects of grazing
intensity on net N mineralization exhibit strong seasonal
dependence, and concluded that grazing at moderate to
high intensities will slow down soil N cycling in the peak
growing season. In contrast, a study across a precipitation
gradient along the 700 km China-Mongolia transect,
showed that long-term grazing dramatically increased N
content and decreased C：N ratios in all plant compart-
ments, suggesting accelerated N cycling[81]. Furthermore,
the latest study in meadow steppe in north-east China
demonstrated that livestock grazing at moderate intensity
exerted predominantly positive effects on soil N cycling
regardless of grazing livestock species and grassland plant
diversity context, and the facilitating effect was to a large
extent driven by animal waste flowing to the soil[82]. The
effects of grazing on soil P, especially available P, is less
well studied, even though it may be a major limiting factor
for plant growth, especially in Kobresia meadows[83].
Over the last decade, increasing studies have started to

investigate the effects of grazing on grassland C fixation.
Grazing mostly decreased soil organic carbon (SOC)[84],
but under certain conditions moderate grazing increased
SOC in the Inner Mongolian steppe[85–87] and alpine
meadows[88]. Decreased SOC can be explained by several
pathways. First long-term overgrazing usually causes
declines in net primary production[89,90], which decreases
the carbon input to soils. Secondly, livestock grazing
reduces SOC by reducing the quantity of resources
returned to the soil, particularly by removing the palatable
grasses and sedges that produce higher-quality litter for
decomposers than unpalatable species[91]. Also, grazing
decreased SOC through higher loss of carbon to the
atmosphere as a result of higher soil temperature, and
increased soil biota and root activities after grazing[92,93].
Furthermore, over long time periods, grazing can result in
soil compaction, altering soil infiltration rates, increasing
soil bulk density, decreasing soil porosity and increasing
soil erosion by wind, which leads to alterations in SOC[94].

Effects of grazing on belowground C storage remain
uncertain due to methodological difficulties and spatial
heterogeneity[95].

3.3 Foraging behavior of large herbivores

The understanding of interactions between grassland plant
and grazing herbivore is crucial for the theoretical basis for
grassland management. Grazing herbivores affect plant
communities and edaphic processes by selectively
removing biomass, physical disturbance, and excreting
nutrients in dung and urine, thereby affecting grassland
ecosystem function. Foraging behavior of herbivores, and
diet selection in particular, has the most direct influence on
the diversity and population dynamics of plant commu-
nities[96]. One of the main challenges of studying grazing
ecology is to predict diet selection and intake of herbivore.
Research on foraging behavior in China prior to 2010

was mostly concerned with preliminary observation and
description of foraging time, walking time, rumination
activity and diet preference of grazing animals in free
rangeland[97]. During this period, the relationship between
herbivore consumption and plant characteristics, such as
structure, morphology, primary and secondary chemistry,
and plant density and height, have been well estab-
lished[98,99]. From the 2010s, comprehensive studies of
evolutionary relationships between foraging strategies of
grazing animals and vegetation heterogeneity were con-
ducted in grassland ecosystems. An important finding
showed that plant species richness in grasslands, will
increase food consumption of herbivores and enhance
nutrient intake by modifying nutrient balance, toxin
dilution and taste modulation[12]. Higher plant species
richness simultaneously intensifies herbivore diet switch-
ing frequency, and weakens herbivore ability to select
food, thereby increasing foraging cost and disturbing
herbivore selection of plants[12]. Another study found that
the random dispersion of less preferred species in grass-
lands may reduce herbivore consumption of highly
preferred species, thus minimizing selective grazing[100].
High complexity of a spatial neighborhood also can result
in herbivores passively reducing selectivity, thereby
reducing the probability of damage to palatable species
in the community[101]. It was found that there may be a
weak positive feedback between plant species richness and
herbivore foraging, and suggested that increasing plant
diversity, especially plant functional group diversity, can
reduce herbivore selectivity and promote more uniform use
of different plant species in rangelands[102].

3.4 The factors affecting grazing effects on grassland
structure and function

The varying effects of grazing on grassland structure
and function may be in part attribute to grazing
intensity[73,103–105], grazing system and grassland

Deli WANG et al. Perspectives and challenges in grassland 29



types[71,86,106], which are also regulated by climate factors.
For example, in a typical steppe, plant production in
rotational grazing was higher than in continuous grazing in
a drought year, whereas there was no significant difference
in two grazing systems in a normal year[86]. During the past
30 years in China, more research effort has been directed to
examining the effects of grazing intensity or enclosure on
grassland structure and function (Fig. 3). Notable progress
has been made in understanding the negative effects of
overgrazing. From various grazed systems, overgrazing
has been shown to negatively affect vegetation structure,
diversity and ecosystem function, while light or moderate
grazing has neutral or even positive effects[107]. However
few studies attempt to consider how to further develop
adaptive grazing management to maintain and improve
grassland function under moderate grazing intensity.
Different herbivore species have different foraging
behaviors and patch preferences[108], which could have
varying effects on species diversity and ecosystem
function[109–111] even under same grazing intensity.
Furthermore most natural grasslands are grazed by more
than one species of herbivore. Herbivore species within a
grazer assemblage can compete with each other or the
presence of one can facilitate that of another[112]. Whether
and how herbivore assemblages modify grazer impacts on
biodiversity and ecosystem function has rarely been
examined in managed ecosystems[113,114]. We also found
that only a few studies in China have considered the effects
of herbivore assemblage (i.e., different herbivore species
and combinations). These studies showed that the effects
of grazing strongly depend on herbivore assemblages, and
suggested that multiple-species grazing regimes in grass-
land systems could represent the optimal choice for grazing
management[82,115,116]. Moreover, more and more studies
have focused on interactive effects of grazing herbivore
and climate change, such as N deposition and precipitation
(Fig. 3).

4 Global climate change and grassland
process and function

Global climate change is considered to be an uncontro-
versial fact that strongly affects terrestrial ecosystems[117],
especially grasslands. The responses of all grassland
components to global climate change still need to be
given more attention, and the responses of grassland
ecosystems need to be studied from a perspective of plants,
animals and soil.

4.1 Responses of plants

At an individual plant level, climate change can have
strong effects. Photosynthesis is the fundamental basis for
carbon accumulation, growth and biomass production of
plants, and some studies have shown that most of the

species in temperate steppe can acclimate to a warmer
environment, and photosynthetic responses of plants to
warming were species-specific, such as for C3 and C4

plants[118]. Beside photosynthesis, plant respiration is key
to determining carbon exchange in leaves, plants and
ecosystems[119], therefore, when examining the carbon
cycling under climate warming, it is necessary to under-
stand thermal acclimation of leaf dark respiration[120].
Phenology is one of most sensitive traits of plants in
response to climate warming[121], and warming response of
plant phenology is larger in earlier than later flowering
species in temperate grassland systems[122]. Apart for
warming, nitrogen deposition is another factor affected by
climate change with spatial and temporal distribution of
plant roots responding differently to soil N availability[37].
A growing body of evidence from long-term observa-

tional[123] and experimental[124,125] studies has demon-
strated that climate change has the potential to alter plant
community structure and composition. Some studies found
that indirect effects of warming on plant community
composition are mediated by altering water availabi-
lity[126], but N addition and increased precipitation
significantly altered plant community structure and
composition through both abiotic (e.g., soil moisture and
temperature) and biotic factors (e.g., plant traits and
herbivory)[123]. Functional and species diversity have
opposite responses to short-term fertilization, with
increases in functional diversity and decrease in species
diversity[127]. Moreover, nitrogen effects on plant species
diversity depends on water availability[128], links to metal
mobilization in soil and differential metal acquisition[129],
and results from both acidification and ammonium
toxicity[130].

4.2 Responses of productivity and stability

To what extent climate change impacts terrestrial plant
growth and biomass accumulation[37,131], and the observed
responses of plant biomass and/or NPP of terrestrial
ecosystems to experimental warming have been consi-
dered in recent reports[132,133]. Lin et al.[134] found by
meta-analysis that warming significantly increased bio-
mass by 12.3% and that this effect depends upon PFTs
(plant functional types), with significantly greater stimula-
tion of woody (26.7%) than herbaceous (5.2%) species.
However, experimental warming decreased annual root
production[135]. Climate warming is expected to result in
unequal changes in day and night temperatures[136],
asymmetrical warming may have significant effects on
root growth, mortality and turnover[137].
Stability is an important property of ecological systems,

and community temporal stability was found to be mainly
driven by water and N availability that modulated the
degree of species asynchrony and, to a lesser extent, by the
stability of dominant plant species[138,139], and ecosystem
stability were positively associated with population
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stability and the residuals of population stability under N
addition[140].
Some studies found that daytime, but not nighttime,

warming significantly reduced community temporal stabi-
lity mainly through the reduction in the abundance of
stable dominant species[141]. The relationship between
biodiversity and ecological stability is a longstanding issue
in ecology, and has gained renewed interest among
ecologists because of environmental change. Through a
7-year grassland experiment, Yang et al.[142] found that
mowing and nutrient addition did not alter these positive
diversity-stability relationships.

4.3 Responses of nutrient cycling

Climate change regulates almost all biogeochemical
processes, and will therefore have a profound effect on
ecosystem functions such as cycling of C and N[143,144].
Asymmetrical warming affected soil respiration through
different pathways. There were no direct positive effects of
day warming due to increased temperature, but there were
indirect negative effects via aggravating water limitation
and suppressing ecosystem C assimilation. Positive effects
due to night warming included the stimulation of
ecosystem C uptake and substrate supply via over-
compensation of plant photosynthesis[145]. Soil moisture
is an important determinant for altering soil respiration,
especially under climate warming[146]. N addition either
increased or decreased soil respiration, and such effects
strongly depend on N level[147].
In semi-arid grassland, plant foliar N and P concentra-

tions, resorption efficiency and proficiency can respond
differently to these resources changes. N addition and
water addition increased N concentration but had no effect
on P concentration in green leaves. Both N addition and
water addition reduced plant N resorption proficiency. N
addition increased and water addition had no effect on P
resorption proficiency[148]. N and P availability in soil and
N and P concentrations in green and senesced grass leaves
increased with increasing rates of N addition. Foliar N and
P resorption significantly decreased along the N addition
gradient, implying a resorption mediated, positive plant–
soil feedback induced by N inputs[149].
Loss of plant diversity with increased anthropogenic N

deposition in grasslands has occurred globally. Tian
et al.[129] provided evidence from a 9-year N-addition
experiment for an alternative mechanism: differential
sensitivity of forbs and grasses to increased soil manganese
levels. In Inner Mongolian steppes, increasing the N
supply shifted plant community composition from grass-
forb codominance to exclusive dominance by grass, with
associated declines in overall species richness. In addition
to N deposition, higher aridity and more extreme rainfall
events in dryland areas are predicted with climate change.
Wang et al.[150] investigated soil N isotopic values (d15N)
along a 3200 km aridity gradient and revealed a hump-

shaped relationship between soil d15N and aridity index.
Precipitation increased the total leaf area of Stipa grandis
primarily by increasing leaf numbers; however, elevated
CO2 increased the total leaf area of this species by
enlarging single leaf area[151]. Elevated CO2 stimulated
plant biomass of Agropyron cristatum to a greater extent
under moderate changes in water status than under either
extreme drought or overly wet conditions[152].

4.4 Responses of soil biotic

A number of studies have shown that soil microorganisms
are key in determining carbon exchange in terrestrial
ecosystems[153], and soil microbes are affected by climate
change[154,155]. By experimental manipulation of precipi-
tation, warming and N, colimitation of microorganisms on
soil microbes was found where water is a primary
limiting factor, and N addition positively affected soil
microorganisms only when water is sufficient[156]. Arbus-
cular mycorrhizal fungal (AMF) form symbiotic associa-
tions with more than 80% of terrestrial plant species, and
are an important part of soil microflora. Warming had a
significant positive effect on AMF diversity, but N addition
significantly altered the AMF community composi-
tion[157]. In a 6-year fertilization experiment, N fertilization
significantly altered the AMF communities but had no
obvious influence on AMF abundance. However, P
fertilization showed no significant influence on the AMF
community structure, but induced a significant decrease in
mycorrhizal colonization rate, arbuscular colonization and
hyphal length density[158].
In addition to microflora, soil fauna is important in

regulating ecosystem processes and functions[159], and
strongly responded to global climate change. Experimental
warming had slightly negative but insignificant effects on
mites and Collembola, but increased precipitation greatly
enhanced their abundance[160]. Nematode abundance was
significantly increased by N fertilization, but nematode
generic richness declined[161], and the effects of N
additions on soil nematode communities were independent
of water[162].

4.5 Responses of insects

As poikilothermal animals, insects are sensitive to climate
change. With elevated temperature, most grasshopper
species in Inner Mongolian grasslands are likely to extend
their distribution northward with warming[163]. Warming
may shift animal spring phenology and population
dynamics[164], and these effects may depend on variations
in precipitation[165]. Besides phenology, warming
decreased the body size (adult body mass) of insects
early in the growing season (May–September) but
increased the size late in the growing season, regardless
of host-plant identity[166]. Due to close relationships
between plants and insects, altered plant community
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composition under warming strongly affected insect
communities, importantly it enhanced the positive effects
of plant diversity on insect diversity[167], and altered
precipitation shifted insect community-dominated herbi-
vores to predators[168].

5 Grassland restoration

Grassland restoration in China started in 1980s, when Liu
and colleagues in Inner Mongolia University studied the
restoration succession of degraded grasslands in Inner
Mongolia[169]. This study pioneered the study of grassland
ecosystem degradation succession status in China, with the
longest continuous research on the grassland dynamics in
China. Studies of grassland restoration before 2000 mainly
focused on vegetation succession, and later studies on the
restoration process and mechanisms and the recovery of
ecosystem functioning. With the implementation of a suite
of projects, including returning farmland to forest and
grassland, the recovery of biodiversity and ecosystem
service has been the two main goals of grassland
restoration.

5.1 Vegetation restoration

Plant community succession characteristics, especially
grassland productivity, are the basal indicators for the
evaluation of grassland ecosystems. Before 1990, there
was little work on grassland restoration and the in situ
study of Liu from 1983 in a typical Xilin Gol steppe
dominated by L. chinensis and S. grandis was the most
outstanding research at that time. They found that there
was a great difference in plant biomass between the
severely degraded grassland and the control, and plant
productivity was close to that before degradation after the
restoration for 8–10 years[170,171]. Wang et al.[172]

suggested that plant colonization ability and resource
availability in the environments are the two driving forces
in restoring a degenerated grassland. In some ecosystems,
light to moderate livestock grazing and other techniques,
such as mowing, were found to benefit grassland
restoration[173]. Vegetation succession during restoration
was also explored in other grasslands, such as Horqin
sandland[174,175], Alashan desert steppe[176], alkaline
meadow[177] and Loess Plateau[178].
Beyond productivity, there was further research,

including plant diversity[166], growth strategies[179], spatial
pattern of plant communities and dominant species[175,177],
and resilience after extremely aridity disturbance[180].
Enclosing increased plant diversity through enhancing
species richness, and the mechanisms of ecological
restoration of desert steppe were the increased reproduc-
tion of several species and the full use of surplus
resources[176]. In Horqin sandland, most species were
spatially aggregated, which had the advantage of

promoting population invasion and inhabitation, commu-
nity formation and vegetation restoration. In the process of
community succession, the change in the intensity of
distribution pattern and community aggregation was in
accordance with population dynamics and spatial hetero-
geneity of community structure[175]. In a long-term grazing
exclusion experiment on the Loess Plateau, it was found
that the succession during the recovery process could be
divided into four stages[181]. During the process of
community succession, the community coverage, plant
density, species richness, diversity index, and aboveground
biomass increased gradually, with aboveground biomass
reaching a maximum (521 g$m–2) after 12 years and
belowground biomass after 15 years. They suggested that
degraded grassland could be utilized by mowing once
every 2 years or light grazing after being fenced for 10–15
years. By analyzing the difference between grazing and
enclosure from 1992 to 2006 in degraded grassland of
Horqin sandland, Zhao et al.[174] found that after enclosure
to prevent grazing, there was a greater difference in
restoration of vegetation between grasslands of different
original grazing intensities; the more severe the original
grazing the faster the restoration. Plant height, coverage
and biomass were more rapidly restored than species
richness, diversity and frequency. The restoration process
was significantly affected by climate change, and a warm
and wet climate was beneficial for the restoration of
degradation vegetation, and a warm and dry climate was
detrimental.

5.2 Ecosystem functioning restoration

Ecosystem functioning and services are the benefits people
gain from ecosystems, including a multitude goods and
services that maintain and improve human well-being, and
these functions and services are essential for regional
landscape sustainability[182,183]. Climate change, habitat
loss, pollution, overexploitation and invasive species are
the main causes of biodiversity loss and ecosystem
degeneration, leading to reduced provision of ecosystem
services[184]. Ecological restoration, designed to recover
and reestablish the characteristics of an ecosystem that has
been degraded, damaged or destroyed, is now recognized
as an important strategy to mitigate human pressures on
natural ecosystems[185].
Compared to vegetation restoration, the recovery of

ecosystem functioning has attracted less attention in
research on grassland restoration. In Songnen grassland,
Li and Zheng[186] first reported response of SOC to
enclosing and other treatments. In Horqin sandland, Chuan
et al.[187] found that soil nutrient availability was also
improved together with recovery of vegetation. In a
degraded sandy grassland, enclosing could contribute to
carbon sequestration and moderate grazing enhanced the
carbon sink[188]. With increasing time of vegetation
restoration on the Loess Plateau, soil microbial carbon
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and respiration significantly increased, and soil respiration
was less affected by plant growth[189]. After enclosing a
desert grassland for 13 years, livestock exclusion improved
soil organic matter, macro nutrients and trace elements, soil
texture and carbon sequestration potential, however, it was
estimated it would take at least 100 years for carbon stock
to be restored to that of non-dersertified grassland[190].
Other functions of grassland, including soil respiration,
CO2 exchange, carbon emission, carbon and nitrogen stock
and water conservation, have also been evaluated in recent
years[191–193]. Apart from ecosystem functioning, biodi-
versity has also been studied over the last decade. The soil
microbe and animal diversity were surveyed in sandy and
alkaline-saline grasslands[194–198].

5.3 Grassland restoration models

Ecological restoration is “intentional activity that initiates
or accelerates the recovery of an ecosystem with respect to
its health, integrity and sustainability”[199]. Restoration
ecology emerged as a separate field in ecology in the
1980s, and is the academic study of the process, whereas
ecological restoration is the actual project or process
carried out by restoration practitioners. Based on the
theoretical research, some practical techniques for grass-
land restoration have been developed for some types of
degraded grassland, especially the alkaline-saline grass-
land in the Songnen Plain and degraded black-soil
grassland on the Qinghai–Tibetan Plateau.
The western Songnen Plain is one of China’s most

important alkaline-saline areas and has been increasing in
size by 20000 hm2$yr–1 as a result of natural and
anthropogenic factors, which is impeding economic
development in the area. Zhu and colleagues in North-
east Normal University began the grassland research in the
1950s[200], and undertook systematic studies on the
degradation mechanism, restoration theory, and biological
and ecological technology of alkaline-saline grassland.
Their studies showed that the secondary salinization of
grassland soil is the main reason for the formation of
alkaline-saline soil, induced by the vegetation degradation
due to strong anthropogenic disturbance. It was suggested
that to protect and recover vegetation is an effective way to
prevent and improve alkaline-saline grassland soil[201].
Enclosing was shown to be an effective way for natural
restoration, to promote vegetation succession and to restore
to the original vegetation for the alkalinized grassland[202].
They suggested some biological, physical and chemical
approaches to improve alkaline-saline grassland, setting up
litter layer and sowing plants with high tolerance to alkali
and salt, irrigation, plowing, coring sand and applying
acidifying chemicals[203–205]. An ecological restoration
and optimal models for development on alkaline meadow
was conclusively proposed[206]. Vegetation succession was
divided into five stages, and there were further studies on
the dynamic population models, progressive succession,

modular structures of populations, seed flows in plant
communities and spatial patterns of plant diversity[207–211].
The Qinghai–Tibetan Plateau, the highest and youngest

plateau on earth, is one of the most important components
of natural ecosystems and among the most threatened
landscapes in the world. The alpine meadows are vital for
water conservation and the productivity of local grass-
lands[212,213]. However, degraded grasslands account for
25% of the total area of this region representing about half
of the total alpine grassland. The area has becomes bare
land without vegetation in the cold season, which is
followed by the land being covered with poisonous and
ruderal plants that are inedible by livestock in the warm
season. This leads not only to ecological problems but
also greatly reduces the productivity of these
grasslands[214–216]. Degradation of black-soil grassland
was caused by a complex set of factors such as altitude
range, district characteristics and weather conditions,
which have existed for a long period of time. Livestock
overgrazing and climate dryness were the dominant factors
that led to the degradation of the grasslands in question. In
addition, damage done by rodents, especially pikas
(Ochotona curzoniae), via burrowing through the turf
and gnawing at herbs, have accelerated the process of
degradation of black-soil grassland. Furthermore, with the
increase in the population over the last 20 year, the
influence of human activity on grassland degradation
cannot be ignored. Based on the different successive stages
of degradation of the black-soil grassland ecosystem,
different restorative measures have been suggested. The
light to moderately degraded grasslands should be
protected from disturbance by strategies such as fencing,
weeding, fertilizing, using rodenticide, decreasing stocking
rate, optimizing livestock population structure and slaugh-
ter ages. From heavily to extremely degraded grasslands,
artificial and semi-artificial grassland establishment is
required to restore these ecosystems[217].

6 Grassland ecosystem health assess-
ments

Grassland ecosystem health assessment is one of the fastest
growing branches of grassland ecology. The research on
grassland health assessment focuses on the investigation of
the standard, maintenance, restoration and regulatory
mechanisms for grassland ecosystem health, and the
establishment and development of health monitoring
systems and management tools. This can lay the founda-
tion for the theoretical system and methodology of
grassland health assessment.

6.1 The concept of grassland ecosystem health

Ecosystem health is a term used to describe the condition
of an ecosystem, and the health metaphor has been applied
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to the environment since the early 1800s[218–220]. The term,
ecosystem management, has been in use since the
1950s[221]. The term, ecosystem health, has become
widespread in the ecological literature, as a general
metaphor meaning something beneficial[222], and as an
environmental quality goal in field assessments of
rivers[223], lakes[224], seas and forests[225].
The concept of grassland ecosystem health was

proposed in the 1930s to 1940s, when human-dominated
ecosystems became highly dysfunctional and degraded
across the globe[226]. The research in this area started in the
early 1980s in China mainly to evaluate the comprehensive
benefit of grassland ecosystem[227]. Productivity is the
productive capacity or level of production at which the
ecosystem keeps healthy. System health status is the trend
that the basic structure and functioning of ecosystem could
be improved, and the system could keep stable[228]. From a
systematic point of view, it has been suggested that the
health of grazing ecosystems is the health of the three
subsystems of the soil, plants and animals. From the point
of view of plants, this involves the physiological and
ecological processes of community, population, and
individuals. From the point of view of animal husbandry,
it is the quality and quantity of plant production and animal
production to be sustained and improved over time. It
results from the coupling and overcoming of the system
constraints under the control of human activities[229].
Others have suggested that grassland health is the extent to
which the land, vegetation, water and air, and their
ecological processes can be maintained in the grassland
ecosystem[230]. The health of the grassland should include
several main aspects: stability of soil and land, hydro-
logical function, and integrity of biological communities.
Therefore, the purpose of grassland ecosystem manage-
ment is to ensure that grasslands are always in good health.

6.2 Evaluation indexes and methods for grassland
ecosystem health

A key issue for grassland ecosystem health assessment is
how to select effective evaluation indexes and establish
appropriate evaluation methods. Index systems have
preliminarily been established in North America and
Australia. There are 17 indexes for grassland evaluation
in North America, and a method of landscape function
analysis is adopted in Australia. Generally, the evaluation
methods for grassland ecosystem health include methods
for factor list, factor compound, functioning evaluation,
and interface or key process[226]. For the method of factor
list, there is the lack of quantitative relationships between
indexes, but there is a strong pertinence, and it can be a
simple, definite and quick indicator for system health if
properly used. The method of functioning evaluation
incorporates ecosystem function indicators into the
evaluation system, including three stages: choice and
calculation, determination of the weight and assembly

composite of index. The method of interface or key process
integrates the various attribution of the ecosystem by
understanding the key ecosystem processes, integrating the
various attributes of the ecosystem, and establishes the
integrated indicators based on the interaction among the
components. Although this issue has been given due
consideration in China, there is little research in this field.
The establishment of an effective evaluation index

system is essential for grassland ecosystem health assess-
ment. Due to the complexity, temporal and spatial
variability of grassland ecosystem, and the limitation of
evaluation methods, the evaluation method for grassland
health should be carefully selected and repeatedly
verified[231]. Firstly, the method should be chosen based
on the basic attributes of the grassland ecosystem,
especially the key variable of ecosystem processes and
functioning. Secondly, the effectiveness, sensitivity and
operability of alternative indicators should be consi-
dered[230]. Meanwhile, the integration of grassland health
assessment indicators should be given attention, because it
is sensitive to environment stresses, can warn the risk of
grassland degradation, and is associated with grassland
functioning[232]. Ren et al.[233] suggested that the condition
(C) of grassland should be integrated into the VOR (vigor,
organization, and resilience) index, and establish the
CVOR (condition, vigor, organization, and resilience)
index for grassland health evaluation from the interface
between soil land and vegetation. The CVOR index was
established as the key indicator of land condition and
ecological processes to evaluate the health of Alashan
grassland and it showed that the grassland health depended
on the level of grassland management. The CVOR index
was also established for a typical grassland and was
effective for evaluating the health of this grassland[234].
Overall, CVOR is simple, accurate, practical and compre-
hensive.

6.3 Grassland ecosystem health status

The health of grassland ecosystems is dynamic, and
relating to the health status, grassland may be degraded due
to excessive human activities and natural stresses. Grass-
land degradation could be regarded as a process of health
loss. Such processes are usually divided into three to five
stages. Degraded grassland was divided into four stages,
including light, moderate, severe, extreme degrada-
tion[235]. Health status was divided into four states,
including healthy, threatened, unhealthy and collapsed[236].
The stages are determined from a long investigation on the
succession in a grassland ecosystem. The health stages
should be objective to be suitable for the succession law of
grassland, and be subjective to be convenient for manage-
ment. Subjective assessments of health stages are limited
by the recognition skills of the assessor and affected
by the dynamics of human requirements for grassland
functioning.
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With the analysis of grassland health and degradation,
ecologists are not only concerned with change processes
affecting grassland condition, but also with thresholds.
Grassland ecosystems are sensitive to outside inputs at
particular stages, and there are thresholds between
stages[237]. The synergy between subsystems could also
change and there are thresholds between them[236]. The
threshold of ecosystem health refers to the status of that
ecosystem when it vulnerable to collapse with disturbance
that overwhelms its resilience[238]. The warning index of
ecosystem health is a suitable beginning for classifying
ecosystem health, but there is more research needed on the
thresholds of grassland health.

7 Conclusion remarks and future outlook

Over the last three decades in China, there have been
increasing research on and documentation of the main
aspects of grassland ecology, revealing the improvement of
classic ecology concepts and theories, and the applicability
of ecological principles of grassland conservation or
management. The profound contributions to ecology
theory have been focusing on (1) the ecosystem functions
of biodiversity (plant productivity, animal performance
and soil nutrient pool)[11,12,239]; and (2) the ecological
stoichiometric mechanisms of grassland community stabi-
lity[13]. Meanwhile, important progress in grassland
conservation and management has been made in (1)
mechanisms controlling locust outbreaks induced by
livestock grazing[14,59,60]; and (2) grazing regulating
plant population dynamics, plant diversity and nutrient
cycling[46,48,52,80,82,107]. Additionally, some studies from
experimental research have provided new insights into the
effects of global climate change on grassland plant
traits[119,126,134], insect communities[167,168], soil fauna
and microbial communities[155], and systematical carbon
and nutrient flux[143,144].
In conclusion, significant advances in grassland ecology

in China have been achieved by the concerted efforts of
ecologists undertaking observational, experimental and
theoretical studies[240]. Nevertheless, there are still impor-
tant challenges for the grassland ecology research in China
as followings:
(1) Future research needs to strength the basic ecological

theory for grassland ecosystems because these ecosystems
are more complex than previous thought. As one of
grassland system dimensions is spatial processes, the
analytical or assessment consequences for grassland
properties and functions should be associated to spatial
patterns or heterogeneity. Moreover, aboveground-
belowground linkages need to be given more attention due
to increasing evidence demonstrating that interactions
between aboveground and belowground communities
regulate grassland functions.
(2) Grassland ecologists are aware that the impacts of

large herbivores (livestock) are highly diverse and closely
related to grassland multi-functionality. Thus, future
research on grazing activity and its application needs to
consider the systematical consequences from grassland
structure to process, and to multiple functions, as well as
livestock species or assemblages, which potentially
improve adaptive management.
(3) The effects of climate change need to be investigated

with more experimental research across the grassland belt
from the meadow steppes in the north-east to alpine
steppes of the Qinghai–Tibetan Plateau and Tian Moun-
tain. Given that climate changes, such as warming, and
altering precipitation or N deposition, will have long-term
effects on the grassland processes and functions, there is
need for continued efforts to examine and establish the
underlying mechanisms.
(4) Ecological methods and experimental techniques

have a vital role in grassland ecology. For example, the
lack of credible sampling methods, such as plant root
measurement, and nutrient or microbe sampling with
highly heterogeneity soils, impedes the acquisition of
accurate data so that reliable conclusions cannot be made.
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