Please wait a minute...
Frontiers of Chemistry in China

ISSN 1673-3495

ISSN 1673-3614(Online)

CN 11-5726/O6

Frontiers of Chemistry in China  2009, Vol. 4 Issue (2): 191-195   https://doi.org/10.1007/s11458-009-0036-5
  RESEARCH ARTICLE 本期目录
Fluorescence cross-correlation spectroscopy using single wavelength laser
Fluorescence cross-correlation spectroscopy using single wavelength laser
Chao XIE, Chaoqing DONG, Jicun REN()
College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, china
 全文: PDF(163 KB)   HTML
Abstract

In this paper, we first introduced the basic principle of fluorescence cross-correlation spectroscopy (FCCS) and then established an FCCS setup using a single wavelength laser. We systematically optimized the setup, and the detection volume reached about 0.7 fL. The home-built setup was successfully applied for the study of the binding reaction of human immunoglobulin G with goat antihuman immunoglobulin G. Using quantum dots (745 nm emission wavelength) and Rhodamine B (580 nm emission wavelength) as labeling probes and 532 nm laser beam as an excitation source, the cross-talk effect was almost completely suppressed. The molecule numbers in a highly focused volume, the concentration, and the diffusion time and hydrodynamic radii of the reaction products can be determined by FCCS system.

Key wordsfluorescence cross-correlation spectroscopy    single-molecule detection    single laser excitation    quantum dot
出版日期: 2009-06-05
Corresponding Author(s): REN Jicun,Email:jicunren@sjtu.edu.cn   
 引用本文:   
. Fluorescence cross-correlation spectroscopy using single wavelength laser[J]. Frontiers of Chemistry in China, 2009, 4(2): 191-195.
Chao XIE, Chaoqing DONG, Jicun REN. Fluorescence cross-correlation spectroscopy using single wavelength laser. Front Chem Chin, 2009, 4(2): 191-195.
 链接本文:  
https://academic.hep.com.cn/fcc/CN/10.1007/s11458-009-0036-5
https://academic.hep.com.cn/fcc/CN/Y2009/V4/I2/191
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
1 Shao C, Hu D H, Sun H Z, Yan L K, Su Z M, Wang R S, Zhu W S, Guo J H, Sun N Z, Sun H, Li Z S, Sun C C. Structure exploration and function prediction of SARS coronavirus E protein. Chem Res Chinese U , 2005, 26(8): 1512-1516 (in Chinese)
2 Zhao J W, Wang N. Electricity characterization of metalloprotein at molecular level by conducting atomic force microscopy. Chem Res Chinese U , 2005, 26(4): 745-753 (in Chinese)
3 Nie S, Chen P, Liang S P. Identification of interacting molecules by biomolecular interaction analysis combined with surface plasmon resonance-mass spectrometry at 10-15 mol Level. Chem Res Chinese U , 2005, 26(1): 68-72 (in Chinese)
4 Heikai A A, Heikal S T, Baird G S, Tsien R Y, Webb W W. Molecular spectroscopy and dynamics of intrinsically fluorescent proteins: Coral Red (dsRed) and Yellow (Citrine). Proc Natl Acad Sci , 2000, 97(22): 11996-12001
doi: 10.1073/pnas.97.22.11996
5 Torres T, Levitus M. Measuring conformational dynamics: A new FCS-FRET approach. J Phys Chem B , 2007, 111(25): 7392-7400
doi: 10.1021/jp070659s
6 Wennmalm S, Edman L, Rigler R. Conformational fluctuations in single DNA molecules. Proc Natl Acad Sci , 1997, 94(20): 10641-10646
doi: 10.1073/pnas.94.20.10641
7 Schwille P, Meyer-Almes F J, Rigler R. Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution. J Biophys , 1997, 72(4): 1878-1886
doi: 10.1016/S0006-3495(97)78833-7
8 Larson D R, Gosse J A, Holowka D A, Baird B A, Webb W W. Temporally resolved interactions between antigen-stimulated IgE receptors and lyn kinase on living cells. J Cell Biol , 2005, 171(3): 527-536
doi: 10.1083/jcb.200503110
9 Oyama R,Takashima H, Yonezawa M, Doi N, Miyamoto-Sato E, Kinjo M, Yanagawa H. Protein-protein interaction analysis by c-terminally specific fluorescence labeling and fluorescence cross-correlation spectroscopy. Nucleic Acids Res , 2006, 34(14): e102
doi: 10.1093/nar/gkl477
10 Kettling U, Koltermann A, SchwilleP, Eigen M. Real-time enzyme kinetics monitored by dual-color fluorescence cross-correlation spectroscopy. Proc Natl Acad Sci , 1998, 95(4): 1416-1420
doi: 10.1073/pnas.95.4.1416
11 Rarbach M, Kettling U, Koltermann A, Eigen M. Dual-color fluorescence cross-correlation spectroscopy for monitoring the kinetics of enzyme-catalyzed reactions. Methods , 2001, 24(2): 104-116
doi: 10.1006/meth.2001.1172
12 Bacia K, Schwille P. Dynamic view of cellular processes by in vivo fluorescence auto- and cross-correlation spectroscopy. Methods , 2003, 29 (1): 74-85
doi: 10.1016/S1046-2023(02)00291-8
13 Bacia K, Kim S A, Schwille P. Fluorescence cross-correlation spectroscopy in living cells. Nat Methods , 2006, 3(2): 83-89
doi: 10.1038/nmeth822
14 Kim S A, Heinze K G, Waxham M N, Schwille P. Intracellular calmodulin availability accessed with two-photon cross-correlation. Proc Natl Acad Sci , 2004, 101(1): 105-110
doi: 10.1073/pnas.2436461100
15 Wohland T, Hwang L C. Recent advances in fluorescence cross-correlation spectroscopy. Cell Biochem Biophys , 2007, 49(1): 1-13
doi: 10.1007/s12013-007-0042-5
16 Magde D, Elson E L, Webb W W. Thermodynamic fluctuations in a reacting system: measurements by fluorescence correlation spectroscopy. Phys Rev Lett , 1972, 29(11): 705-708
doi: 10.1103/PhysRevLett.29.705
17 Rigler R, U Mets. Diffusion of single molecules through a gaussian laser beam. Soc Photo-Opt Instrum Eng , 1992, 1921 (1): 239-248
18 Rigler R, Mets U, Widengren J, Kask P. Fluorescence correlation spectroscopy with high count rates and low background: analysis of translational diffusion. Eur Biophys J , 1993, 22(3): 169-175
doi: 10.1007/BF00185777
19 Eigen M, Rigler R. Sorting Single Molecules: Application to diagnostics and evolutionary biotechnology. Proc Natl Acad Sci , 1994, 91(13): 5740-5747
doi: 10.1073/pnas.91.13.5740
20 Zhang P D, Ren J C. Advances in fluorescence correlation spectroscopy and its applications in single molecule detection. Chinese J Anal Chem , 2005, 33(6): 875-880 (in Chinese)
21 Dong C Q, Bi R, Qian H F, Li L, RenJ C. Coupling fluorescence correlation spectroscopy with microchip electrophoresis to determine the effective surface charge of water-soluble quantum dots. Small , 2006, 2(4): 534-538
doi: 10.1002/smll.200500456
22 Dong C Q, Qian H F, Fang N F, Ren J C. Study of fluorescence quenching and dialysis process of cdte quantum dots, using ensemble techniques and fluorescence correlation spectroscopy. J Phys Chem B , 2006, 110(23): 11069-11075
doi: 10.1021/jp060279r
23 Dong C Q, Zhang P D, Bi R, Ren J C. Characterization of solution-phase DNA hybridization by fluorescence autocorrelation spectroscopy: genotyping of C677T from methylene tetrahydrofolate reductase gene. Talanta , 2007, 70(71): 1192-1197
doi: 10.1016/j.talanta.2006.06.019
24 Dong C Q, Ren J C. On-line investigation of laser-induced aggregation and photo-activation of cdte quantum dots by fluorescence correlation spectroscopy. J Phys Chem C , 2007, 111(22): 7918-7923
doi: 10.1021/jp071082h
25 Qian H F, Dong C Q, Peng J L, Qiu X, Xu Y H, Ren J C. High-quality and water-soluble near-infrared photoluminescent CdHgTe/CdS quantum dots prepared by adjusting size and composition. J Phys Chem C , 2007, 111 (45): 16852-16857
doi: 10.1021/jp074961c
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed