Please wait a minute...
Frontiers of Chemistry in China

ISSN 1673-3495

ISSN 1673-3614(Online)

CN 11-5726/O6

Front Chem Chin    2011, Vol. 6 Issue (1) : 21-30    https://doi.org/10.1007/s11458-011-0225-x
RESEARCH ARTICLE
Synthesis of cyclic carbonates and dimethyl carbonate using CO2 as a building block catalyzed by MOF-5/KI and MOF-5/KI/K2CO3
Jinliang SONG, Binbin ZHANG, Tao JIANG, Guanying YANG, Buxing HAN()
Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
 Download: PDF(202 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The synthesis of cyclic carbonates or dimethyl carbonate (DMC) using CO2 as a building block is a very interesting topic. In this work, we found that the metal-organic framework-5 (MOF-5)/KI was an active and a selective catalytic system for the synthesis of cyclic carbonates from CO2 and epoxides, and MOF-5/KI/K2CO3 was efficient for the preparation of DMC from CO2, propylene, and methanol by a sequential route. The impacts of temperature, pressure, and reaction time length on the reactions were investigated, and the mechanism of the reactions is proposed on the basis of the experimental results.

Keywords carbon dioxide      cyclic carbonates      dimethyl carbonate (DMC)      metal-organic framework-5 (MOF-5)      sequential route      propylene oxide     
Corresponding Author(s): HAN Buxing,Email:Hanbx@iccas.ac.cn   
Issue Date: 05 March 2011
 Cite this article:   
Jinliang SONG,Binbin ZHANG,Tao JIANG, et al. Synthesis of cyclic carbonates and dimethyl carbonate using CO2 as a building block catalyzed by MOF-5/KI and MOF-5/KI/K2CO3[J]. Front Chem Chin, 2011, 6(1): 21-30.
 URL:  
https://academic.hep.com.cn/fcc/EN/10.1007/s11458-011-0225-x
https://academic.hep.com.cn/fcc/EN/Y2011/V6/I1/21
Fig.1  The phosgene process (1) and the oxidative carbonylation process (2).
Fig.2  The two-step transesterification process.
Fig.3  The alcoholysis of epoxides.
Fig.4  Powder X-ray diffraction pattern of MOF-5.
Fig.5  Thermogram of MOF-5.
Fig.6  FTIR spectra of MOF-5.
entrycatalystyield/%c
1KI0.1
2b)MOF-50
3b)MOF-5+ KOH0.1
4b)MOF-5+ K2CO30.1
5b)MOF-5+ KCl0.2
6b)MOF-5+ KBr1.2
7b)MOF-5+ KI98
8b)ZnO+ KI5
9d)MOF-5+ KI+ K2CO398
10MOF-5(2nd) + KI(fresh)98
11MOF-5(3rd) + KI(fresh)98
Tab.1  Coupling of CO and propylene oxide catalyzed by different catalysts
Fig.7  The effect of CO pressure on PC yield. Reaction conditions were 20 mmol PO with 2.5 mol% KI, 0.1 g MOF-5, reaction temperature 90°C, and reaction time 2 h.
Fig.8  The effect of reaction temperature on PC yield. Reaction conditions were 20 mmol PO with 2.5 mol% KI, 0.1 g MOF-5, CO pressure 6 MPa, and reaction time 2 h.
Fig.9  The influence of reaction time on PC yield. Reaction conditions were 20 mmol PO with 2.5 mol% KI, 0.1 g MOF-5, CO pressure 6 MPa, and reaction temperature 90°C.
Fig.10  Coupling of CO with different epoxides.
entryepoxidesproductstime/hyield/%
11b2b297
21c2c494
31d2d795
41e2e2420
Tab.2  Various carbonates synthesis catalyzed by MOF-5 in the presence of KI
Fig.11  A plausible reaction mechanism for the coupling reaction of CO with epoxide catalyzed by MOF-5 and KI.
entrycatalystPC conversion/%yield/%b)
DMCPG
1c)KI171717
2c)K2CO3636063
3d)MOF-5161516
4c), d)MOF-5+ KI767
5c), d)MOF-5+ K2CO3646063
6c), d)MOF-5+ K2CO3 + KI636062
Tab.3  Transesterification of PC and methanol
Fig.12  Influence of reaction time on the transesterification reaction of PC and methanol. Reaction conditions are 20 mmol PC with 2.5 mol% KCO, 200 mmol methanol, 0.1 g MOF-5, and reaction temperature 130°C.
Fig.13  Influence of reaction time on the transesterification reaction of PC and methanol. Reaction conditions are 20 mmol PC with 2.5 mol% KCO, 200 mmol methanol, 0.1 g MOF-5, and reaction time 2 h.
entrymolar ratio of methanol to PCPC conversion/%yield/%b)
DMCPG
15474345
210646063
315716768
420767576
Tab.4  The effect of molar ratio of methanol to PC on the yield of DMC and PG
Fig.14  DMC synthesis from CO, propylene oxide, and methanol by a sequential route.
entrya)yields/%b)
PCPGDMC5+ 6
1c), d)940.30.43
2c), e)931.31.13.4
3c), f)902.52.63.5
4c), g)895.05.53.7
5c), h)7017.315.39.8
6c), i)7122.421.34.4
7j)85109.83.3
8k)4057.6570
Tab.5  Different reaction routes
Fig.15  A plausible reaction mechanism by a sequential route.
1 Tundo, P., Pure Appl. Chem. 2001, 73, 1117–1124
doi: 10.1351/pac200173071117
2 Tundo, P.; Selva, M., Acc. Chem. Res. 2002, 35, 706–716
doi: 10.1021/ar010076f pmid:12234200
3 Pacheco, M. A.; Marshall, C. L., Energy Fuels 1997, 11, 2–29
doi: 10.1021/ef9600974
4 Romano, U.; Tesei, R.; Mauri, M. M.; Rebora, P., Ind. Eng. Chem. Prod. Res. Dev. 1980, 19, 396–403
doi: 10.1021/i360075a021
5 King, S. T., Catal. Today 1997, 33, 173–182
doi: 10.1016/S0920-5861(96)00118-6
6 Sakakura, T.; Choi, J. C.; Yasuda, H., Chem. Rev. 2007, 107, 2365–2387
doi: 10.1021/cr068357u pmid:17564481
7 Song, C. S., Catal. Today 2006, 115, 2–32
doi: 10.1016/j.cattod.2006.02.029
8 Gibson, D. H., Chem. Rev. 1996, 96, 2063–2096
doi: 10.1021/cr940212c pmid:11848822
9 Fang, S.; Fujimoto, K., Appl. Catal. A Gen. 1996, 142, L1–L3
doi: 10.1016/0926-860X(96)00081-6
10 Tomishige, K.; Sakaihori, S.; Ikeda, Y.; Fujimoto, K., Catal. Lett. 1999, 58, 225–229
doi: 10.1023/A:1019098405444
11 Choi, J. C.; He, L. N.; Yasuda, H.; Sakakura, T., Green Chem. 2002, 4, 230–234
doi: 10.1039/b200623p
12 Sakakura, T.; Saito, Y.; Okano, M.; Choi, J. C.; Sako, T., J. Org. Chem. 1998, 63, 7095–7096
doi: 10.1021/jo980460z pmid:11672338
13 Sakakura, T.; Choi, J. C.; Saito, Y.; Masuda, T.; Sako, T.; Oriyama, T., J. Org. Chem. 1999, 64, 4506–4508
doi: 10.1021/jo990155t
14 Fujita, S.; Bhanage, B. M.; Ikushima, Y.; Arai, M., Green Chem. 2001, 3, 87–91
doi: 10.1039/b100363l
15 Choi, J. C.; Sakakura, T.; Sako, T., J. Am. Chem. Soc. 1999, 121, 3793–3794
doi: 10.1021/ja9900499
16 Ikeda, Y.; Sakaihori, T.; Tomishige, K.; Fujimoto, K., Catal. Lett. 2000, 66, 59–62
doi: 10.1023/A:1019043422050
17 Kishimoto, Y.; Ogawa, I., Ind. Eng. Chem. Res. 2004, 43, 8155–8162
doi: 10.1021/ie040006n
18 Bhanage, B. M.; Fujita, S. I.; Ikushima, Y.; Torii, K.; Arai, M., Green Chem. 2003, 5, 71–75
doi: 10.1039/b207750g
19 Cui, H. Y.; Wang, T.; Wang, F. J.; Gu, C. R.; Wang, P. L.; Dai, Y. Y., Ind. Eng. Chem. Res. 2003, 42, 3865–3870
doi: 10.1021/ie021014b
20 Chang, Y. H.; Jiang, T.; Han, B. X.; Liu, Z. M.; Wu, W. Z.; Gao, L.; Li, J. C.; Gao, H. X.; Zhao, G. Y.; Huang, J., Appl. Catal. A Gen. 2004, 263, 179–186
doi: 10.1016/j.apcata.2003.12.012
21 Bhanage, B. M.; Fujita, S. I.; Ikushima, Y.; Arai, M., Appl. Catal. A Gen. 2001, 219, 259–266
doi: 10.1016/S0926-860X(01)00698-6
22 Li, Y.; Zhao, X. Q.; Wang, Y. J., Appl. Catal. A Gen. 2005, 279, 205–208
doi: 10.1016/j.apcata.2004.10.030
23 Jagtap, S. R.; Bhor, M. D.; Bhanage, B. M., Catal. Commun. 2008, 9, 1928–1931
doi: 10.1016/j.catcom.2008.03.029
24 Tian, J. S.; Miao, C. X.; Wang, J. Q.; Cai, F.; Du, Y.; Zhao, Y.; He, L. N., Green Chem. 2007, 9, 566–571
doi: 10.1039/b614259a
25 Moulton, B.; Zaworotko, M. J., Chem. Rev. 2001, 101, 1629–1658
doi: 10.1021/cr9900432 pmid:11709994
26 Kitagawa, S.; Kitaura, R.; Noro, S., Angew. Chem. Int. Ed. 2004, 43, 2334–2375
doi: 10.1002/anie.200300610
27 Wang, Z.; Cohen, S. M., J. Am. Chem. Soc. 2007, 129, 12368–12369
doi: 10.1021/ja074366o pmid:17880219
28 Song, Y. F.; Cronin, L., Angew. Chem. Int. Ed. 2008, 47, 4635–4637
doi: 10.1002/anie.200801631
29 Natarajan, S.; Mandal, S., Angew. Chem. Int. Ed. 2008, 47, 4798–4828
doi: 10.1002/anie.200701404
30 Li, Y.; Yang, R. T., Langmuir 2007, 23, 12937–12944
doi: 10.1021/la702466d pmid:18031071
31 Morris, R. E.; Wheatley, P. S., Angew. Chem. Int. Ed. 2008, 47, 4966–4981
doi: 10.1002/anie.200703934
32 Zlotea, C.; Campesi, R.; Cuevas, F.; Leroy, E.; Dibandjo, P.; Volkringer, C.; Loiseau, T.; Férey, G.; Latroche, M., J. Am. Chem. Soc. 2010, 132, 2991–2997
doi: 10.1021/ja9084995 pmid:20155921
33 Chen, B.; Liang, C.; Yang, J.; Contreras, D. S.; Clancy, Y. L.; Lobkovsky, E. B.; Yaghi, O. M.; Dai, S., Angew. Chem. Int. Ed. 2006, 45, 1390–1393
doi: 10.1002/anie.200502844
34 Procopio, E. Q.; Linares, F.; Montoro, C.; Colombo, V.; Maspero, A.; Barea, E.; Navarro, J. A. R., Angew. Chem. Int. Ed. 2010, 49, 1–5
35 Lor, B. G.; Puebla, G.; Iglesias, M.; Monge, M. A.; Valero, C. R.; Snejko, N., Chem. Mater. 2005, 17, 2568–2573
doi: 10.1021/cm047748r
36 Seo, J. S.; Whang, D.; Lee, H.; Jun, S. I.; Oh, J.; Jeon, Y. J.; Kim, K., Nature 2000, 404, 982–986
doi: 10.1038/35010088 pmid:10801124
37 Pan, L.; Liu, H.; Lei, X.; Huang, X.; Olson, D. H.; Turro, N. J.; Li, J., Angew. Chem. Int. Ed. 2003, 42, 542–546
doi: 10.1002/anie.200390156
38 Alaerts, L.; Séguin, E.; Poelman, H.; Thibault-Starzyk, F.; Jacobs, P. A.; De Vos, D. E., Chemistry 2006, 12, 7353–7363
doi: 10.1002/chem.200600220 pmid:16881030
39 Gándara, F.; Gomez-Lor, B.; Gutiérrez-Puebla, E.; Iglesias, M.; Monge, M. A.; Proserpio, D. M.; Snejko, N., Chem. Mater. 2008, 20, 72–76
doi: 10.1021/cm071079a
40 Wu, C. D.; Hu, A.; Zhang, L.; Lin, W., J. Am. Chem. Soc. 2005, 127, 8940–8941
doi: 10.1021/ja052431t pmid:15969557
41 Xamena, F. X. L. i.; Casanova, O.; Tailleyr, R. G.; Garcia, H.; Corma, A., J. Catal. 2008, 255, 220–227
doi: 10.1016/j.jcat.2008.02.011
42 Dewa, T.; Saiki, T.; Aoyama, Y., J. Am. Chem. Soc. 2001, 123, 502–503
doi: 10.1021/ja001140b
43 Hasegawa, S.; Horike, S.; Matsuda, R.; Furukawa, S.; Mochizuki, K.; Kinoshita, Y.; Kitagawa, S., J. Am. Chem. Soc. 2007, 129, 2607–2614
doi: 10.1021/ja067374y pmid:17288419
44 Horcajada, P.; Surblé, S.; Serre, C.; Hong, D. Y.; Seo, Y. K.; Chang, J. S.; Grenéche, J. M.; Margiolaki, I.; Férey, G., Chem. Comm. 2007, 2820–2822
45 Liu, H.; Liu, Y.; Li, Y.; Tang, Z.; Jiang, H., J. Phys. Chem. C 2010, 114, 13362–13369
doi: 10.1021/jp105666f
46 Park, Y. K.; Choi, S. B.; Nam, H. J.; Jung, D. Y.; Ahn, H. C.; Choi, K.; Furukawa, H.; Kim, J., Chem. Commun. 2010, 46, 3086–3088
doi: 10.1039/c000775g pmid:20379607
47 Leus, K.; Muylaert, I.; Vandichel, M.; Marin, G. B.; Waroquier, M.; Van Speybroeck, V.; Van der Voort, P., Chem. Commun. 2010, 46, 5085–5087
doi: 10.1039/c0cc01506g pmid:20563337
48 Huang, L.; Wang, H.; Chen, J.; Wang, Z.; Sun, J.; Zhao, D.; Yan, Y., Microporous Mesoporous Mater. 2003, 58, 105–114
doi: 10.1016/S1387-1811(02)00609-1
[1] LI Gang, LIAO Xia, SUN Xinghua, YU Jian, HE Jiasong. Preparation of conductive polypyrrole (PPy) composites under supercritical carbon dioxide conditions[J]. Front. Chem. China, 2007, 2(2): 118-122.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed