Please wait a minute...
Frontiers of Chemistry in China

ISSN 1673-3495

ISSN 1673-3614(Online)

CN 11-5726/O6

Front Chem Chin    2011, Vol. 6 Issue (4) : 253-268    https://doi.org/10.1007/s11458-011-0261-6
REVIEW ARTICLE
Electronic band structure from first-principles Green’s function approach: theory and implementations
Hong JIANG()
Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Material Chemistry and Application, Institute of Theoretical and Computational Chemistry, College of Chemistry, Peking University, 100871 Beijing, China
 Download: PDF(280 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Electronic band structure is one of the most important intrinsic properties of a material, and is in particular crucial in electronic, photo-electronic and photo- catalytic applications. Kohn-Sham Density-functional theory (KS-DFT) within currently available local or semi-local approximations to the exchange-correlation energy functional is problematic for the description of electronic band structure. Many-body perturbation theory based on Green’s function (GF) provides a rigorous framework to describe excited-state properties of materials. The central ingredient of the GF-based many-body perturbation theory is the exchange- correlation self-energy, which accounts for all non-classical electron-electron interaction effects beyond the Hartree theory, and formally can be obtained by solving a set of complicated integro-differential equations, named Hedin’s equations. The GW approximation, in which the self-energy is simply a product of Green’s function and the screened Coulomb interaction (W), is currently the most accurate first-principles approach to describe electronic band structure properties of extended systems. Compared to KS-DFT, the computational efforts required for GW calculations are much larger. Various numerical techniques or approximations have been developed to apply GW for realistic systems. In this paper, we give an overview of the theory of first-principles Green’s function approach in the GW approximation and review the state of the art for the implementation of GW in different representations and with different treatment of the frequency dependence. It is hoped that further methodological developments will be inspired by this work so that the approach can be applied to more complicated and scientifically more interesting systems.

Keywords electronic band structure      many-body perturbation theory      GW approximation     
Corresponding Author(s): JIANG Hong,Email:h.jiang@pku.edu.cn   
Issue Date: 05 December 2011
 Cite this article:   
Hong JIANG. Electronic band structure from first-principles Green’s function approach: theory and implementations[J]. Front Chem Chin, 2011, 6(4): 253-268.
 URL:  
https://academic.hep.com.cn/fcc/EN/10.1007/s11458-011-0261-6
https://academic.hep.com.cn/fcc/EN/Y2011/V6/I4/253
Fig.1  Schematic illustration of Hedin’s equations in the full form (left) and within the approximation (right)
Fig.2  Illustration of the contour deformation approach for the frequency integration
1 Hüfner, S., Photoelectron Spectroscopy: Prinples and Applications 3rd ed. Berlin: Springer, 2003
2 Onida, G.; Rubio, A., Rev. Mod. Phys . 2002, 74, 601-659
doi: 10.1103/RevModPhys.74.601
3 Yu, P. Y.; Cardona, M., Fundamentals of semiconductors: physics and materials properties 3rd ed. Berlin: Springer, 2001
4 Parr, R. G.; Yang, W., Density-Functional Theory of Atoms and MoleculesNew York: Oxford University Press, 1989
5 Dreizler, R. M.; Gross, E. K. U., Density Functional Theory: An Approach to the Quantum Many-Body ProblemBerlin: Springer-Verlag, 1990
6 Martin, R. M., Electronic Structure: Basic Theory and Practical Methods, Cambridge UK: Cambridge University Press, 2004
7 Aryasetiawan, F., in Anisimov, V. I., ed., Strong Coulomb Correlations in Electronic Structure Calculations: Beyond the Local Density Approximation Gordon and Breach Science Publishers, 2000 (1)
8 Fetter, A. L.; Walecka, J. D., Quantum theory of many-particle systems McGraw-Hill, New York, 1971
9 Hedin, L.; Lundqvist, B. I., Solid State Phys . 1969, 23, 1-181
doi: 10.1016/S0081-1947(08)60615-3
10 Hedin, L., Phys. Rev. 1965, 139, A796-A823
doi: 10.1103/PhysRev.139.A796
11 Aryasetiawan, F.; Gunnarsson, O., Rep. Prog. Phys . 1998, 61, 237-312
doi: 10.1088/0034-4885/61/3/002
12 Hybertsen, M. S.; Louie, S. G., Phys. Rev. B 1986, 34, 5390-5413
doi: 10.1103/PhysRevB.34.5390
13 Godby, R. W.; Schlüter, M.; Sham, L. J., Phys. Rev. B 1988, 37, 10159-10175
doi: 10.1103/PhysRevB.37.10159
14 Faleev, S. V.; van Schilfgaarde, M.; Kotani, T., Phys. Rev. Lett. 2004, 93, 126406
doi: 10.1103/PhysRevLett.93.126406 pmid:15447292
15 Bruneval, F.; Vast, N.; Reining, L., Phys. Rev. B 2006, 74, 045102
doi: 10.1103/PhysRevB.74.045102
16 Shishkin, M.; Marsman, M.; Kresse, G., Phys. Rev. Lett. 2007, 99, 246403
doi: 10.1103/PhysRevLett.99.246403 pmid:18233465
17 Bruneval, F.; Gonze, X., Phys. Rev. B 2008, 78, 085125
doi: 10.1103/PhysRevB.78.085125
18 Hamann, D. R.; Vanderbilt, D., Phys. Rev. B 2009, 79, 045109
doi: 10.1103/PhysRevB.79.045109
19 Berger, J. A.; Reining, L.; Sottile, F., Phys. Rev. B 2010, 82, 2010
20 Umari, P.; Stenuit, G.; Baroni, S., Phys. Rev. B 2010, 81, 115104
doi: 10.1103/PhysRevB.81.115104
21 Samsonidze, G.; Jain, M.; Deslippe, J.; Cohen, M. L.; Louie, S. G., Phys. Rev. Lett. 2011, 107, 186404
doi: 10.1103/PhysRevLett.107.186404 pmid:22107653
22 Jiang, H.; Gomez-Abal, R.; Rinke, P.; Scheffler, M., Phys. Rev. B 2010, 81, 085119
doi: 10.1103/PhysRevB.81.085119
23 Inkson, J. C., Many-body theory of solids: An IntroductionNew York: Plenum, 1983
24 Jiang, H.Acta., Acta.Phys. Chim. Sin 2010, 26, 1017
25 Arfken, G. B.; Weber, H. J., Mathematical Methods for Physicists ed. 5th ed. Academic Press , 2001
26 Linderberg, J., ?hrn Propagators in Quantum Chemistry 2nd ed. John Wiley & Sons , 2004
27 Zakrzewski, V. G.; Dolgounitcheva, O.; Zakjevskii, A. V.; Ortiz, J. V., Ann. Rep. Comput. Chem 2010, 6, 79-94
doi: 10.1016/S1574-1400(10)06006-8
28 Shishkin, M.; Kresse, G., Phys. Rev. B 2007, 75, 235102
doi: 10.1103/PhysRevB.75.235102
29 Baldereschi, A.; Tosatti, E., Solid State Commun . 1979, 29, 131-135
doi: 10.1016/0038-1098(79)91022-6
30 Godby, R. W.; Schlüter, M.; Sham, L. J., Phys. Rev. B 1987, 36, 6497-6500
doi: 10.1103/PhysRevB.36.6497
31 Rojas, H. N.; Godby, R. W.; Needs, R. J., Phys. Rev. Lett. 1995, 74, 1827-1830
doi: 10.1103/PhysRevLett.74.1827 pmid:10057767
32 Rieger, M. M.; Steinbeck, L.; White, I. D.; Rojas, H. N.; Godby, R. W., Comput. Phys. Commun. 1999, 117, 211-228
doi: 10.1016/S0010-4655(98)00174-X
33 Rohlfing, M.; Krüger, P.; Pollmann, J., Phys. Rev. Lett. 1995, 75, 3489-3492
doi: 10.1103/PhysRevLett.75.3489 pmid:10059599
34 Blase, X.; Attaccalite, C.; Olevano, V.prb , 2011, 83: 115103
35 Helgaker, T.; Jorgensen, P.; Olsen, J., Molecular Electronic-Structure Theory John Wiley & Sons, 2000
36 Foerster, D.; Koval, P.; Sanchez-Portal, D. J., Chem. Phys. 2011, 135, 074105
37 Gómez-Abal, R.; Li, X.; Scheffler, M.; Ambrosch-Draxl, C., Phys. Rev. Lett. 2008, 101, 106404
doi: 10.1103/PhysRevLett.101.106404 pmid:18851234
38 Li, X., All-Electron G0W0 code based on FP-(L)APW+lo and applications Ph.D. thesis Free University of Berlin , 2008
39 Li, G. L.; Yin, Z., Phys. Chem. Phys. Chem 2011, 13, 2824
40 Aryasetiawan, F., Phys. Rev. B 1992, 46, 13051-13064
doi: 10.1103/PhysRevB.46.13051
41 Kotani, T.; van Schilfgaarde, M., Solid State Commun. 2002, 121, 461-465
doi: 10.1016/S0038-1098(02)00028-5
42 Friedrich, C.; Schindlmayr, A.; Blügel, S.; Kotani, T., Phys. Rev. B 2006, 74, 045104
doi: 10.1103/PhysRevB.74.045104
43 Friedrich, C.; Blügel, S.; Schindlmayr, A.prb , 2010, 81: 125102
44 Aryasetiawan, F.; Gunnarsson, O., Phys. Rev. B 1994, 49, 16214-16222
doi: 10.1103/PhysRevB.49.16214
45 Andersen, O. K., Phys. Rev. B 1975, 12, 3060-3083
doi: 10.1103/PhysRevB.12.3060
46 Aulbur, W. G.; J?nsson, L.; Wilkins, J. W., Solid State Phys. 2000, 54, 1-218
doi: 10.1016/S0081-1947(08)60248-9
47 Gatti, M.; Bruneval, F.; Olevano, V.; Reining, L., Phys. Rev. Lett. 2007, 99, 266402
doi: 10.1103/PhysRevLett.99.266402 pmid:18233592
48 Vidal, J.; Botti, S.; Olsson, P.; Guillemoles, J.-F.; Reining, L. prl , 2010, 104: 056401
49 Vidal, J.; Trani, F.; Bruneval, F.; Marques, M. A. L.; Botti, S.prl , 2010, 104: 136401
50 Botti, S.; Kammerlander, D.; Marques, M. A. L.apl , 2011, 98: 241915
51 Gygi, F.; Baldereschi, A., Phys. Rev. Lett. 1989, 62, 2160-2163
doi: 10.1103/PhysRevLett.62.2160 pmid:10039871
52 Massidda, S.; Continenza, A.; Posternak, M.; Baldereschi, A., Phys. Rev. Lett. 1995, 74, 2323-2326
doi: 10.1103/PhysRevLett.74.2323 pmid:10057899
53 Massidda, S.; Continenza, A.; Posternak, M.; Baldereschi, A., Phys. Rev. B 1997, 55, 13494-13502
doi: 10.1103/PhysRevB.55.13494
54 Continenza, A.; Massidda, S.; Posternak, M., Phys. Rev. B 1999, 60, 15699-15704
doi: 10.1103/PhysRevB.60.15699
55 Johnson, D. J., Phys. Rev. B 1974, 9, 4475-4484
doi: 10.1103/PhysRevB.9.4475
56 Godby, R. W.; Needs, R. J.prl , 1989, 62: 1169
57 von der Linden, W.; Horsch, P., Phys. Rev. B 1988, 37, 8351-8362
doi: 10.1103/PhysRevB.37.8351
58 Engel, G. E.; Farid, B., Phys. Rev. B 1993, 47, 15931-15934
doi: 10.1103/PhysRevB.47.15931
59 Jiang, H.; Engel, E. J., Chem. Phys. 2007, 127, 184108
60 Shishkin, M.; Kresse, G., Phys. Rev. B 2006, 74, 035101
doi: 10.1103/PhysRevB.74.035101
61 Szabo, A.; Ostlund, N. S., Modern Quantum Chemistry New York: McGraw-Hill, 1989
62 Rinke, P.; Qteish, A.; Neugebauer, J.; Freysoldt, C.; Scheffler, M., N. J. Phys. 2005, 7, 126
doi: 10.1088/1367-2630/7/1/126
63 Rinke, P.; Qteish, A.; Neugebauer, J.; Scheffler, M.phys. stat. sol. (b) , 2008, 245: 929
64 Miyake, T.; Zhang, P.; Cohen, M. L.; Louie, S. G., Phys. Rev. B 2006, 74, 245213
doi: 10.1103/PhysRevB.74.245213
65 Jiang, H.; Gomez-Abal, R. I.; Rinke, P.; Scheffler, M., Phys. Rev. Lett. 2009, 102, 126403
doi: 10.1103/PhysRevLett.102.126403 pmid:19392301
66 Jiang, H.; Gomez-Abal, R. I.; Rinke, P.; Scheffler, M., Phys. Rev. B 2010, 82, 045108
doi: 10.1103/PhysRevB.82.045108
67 R?dl, C.; Fuchs, F.; Furthmüller, J.; Bechstedt, F., Phys. Rev. B 2008, 77, 184408
doi: 10.1103/PhysRevB.77.184408
68 Caramella, L.; Onida, G.; Finocchi, F.; Reining, L.; Sottile, F., Phys. Rev. B 2007, 75, 205405
doi: 10.1103/PhysRevB.75.205405
69 Schütz, M.; Hetzer, G.; Werner, H. J., J. Chem. Phys. 1999, 111, 5691
doi: 10.1063/1.479957
70 Ayala, P. Y.; Scuseria, G. E. J., Chem. Phys. 1999, 110, 3660
71 Chiodo, L.; Garcia-Lastra, J. M.; Iacomino, A.; Ossicini, S.; Zhao, J.; Petek, H.; Rubio, A.prb , 2010, 82: 045207
72 Kang, W.; Hybertsen, M. S., Phys. Rev. B 2010, 82, 085203
doi: 10.1103/PhysRevB.82.085203
73 Wang, H.; Wu, F.; Jiang, H. J., PhysChemComm 2011, 115, 16180
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed