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Abstract A sememe is defined as the minimum semantic
unit of languages in linguistics. Sememe knowledge bases are
built by manually annotating sememes for words and phrases.
HowNet is the most well-known sememe knowledge base. It
has been extensively utilized in many natural language process-
ing tasks in the era of statistical natural language processing
and proven to be effective and helpful to understanding and us-
ing languages. In the era of deep learning, although data are
thought to be of vital importance, there are some studies work-
ing on incorporating sememe knowledge bases like HowNet
into neural network models to enhance system performance.
Some successful attempts have been made in the tasks includ-
ing word representation learning, language modeling, semantic
composition, etc. In addition, considering the high cost of man-
ual annotation and update for sememe knowledge bases, some
work has tried to use machine learning methods to automati-
cally predict sememes for words and phrases to expand sememe
knowledge bases. Besides, some studies try to extend HowNet
to other languages by automatically predicting sememes for
words and phrases in a new language. In this paper, we sum-
marize recent studies on application and expansion of sememe
knowledge bases and point out some future directions of re-
search on sememes.

Keywords natural language process, semantics, knowledge
base, sememe, HowNet

1 Introduction
In the field of natural language processing (NLP), a hierarchical
set of meaningful linguistic units are involved including doc-
uments, discourse, sentences, phrases and words, as shown in
Fig. 1. Words are usually the most common processing units,
mainly because a word is the smallest element of human lan-
guages that can stand by itself. But from the semantic perspec-
tive, a word may have multiple senses, and even a sense can
be further split into smaller units (Fig. 1). For example, the most
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commonly used sense of the English word “boy” can be rep-
resented by the composition of meanings of “human”, “male”
and “child”. In linguistics, a sememe is defined as the minimum
semantic unit of human languages [1].

It is believed by some linguists that meanings of all the words
in any language can be represented by a limited set of sememes
(or semantic primitives) [2]. Theoretically, sememes are help-
ful in understanding and utilizing human languages better and
deeper. However, sememes are implicit in text, and it is hard to
determine and utilize sememes for ordinary people. To put the
sememe theory into practice of NLP, sememe knowledge bases
(KBs) are built which contain words and phrases manually an-
notated with sememes.

HowNet [3] is one of the most famous sememe KBs. It has
an elaborate sememe-based annotating system which comprises
about 2, 000 pre-defined sememes. Under the annotating sys-
tem, senses of more than 100, 000 Chinese and English words
are separately annotated with several sememes, where there are
also relations between sememes. The sememes annotated to a
sense actually form a “sememe tree”, where different labels are
attached to parent-child node pairs. The root of a sememe tree is
a categorial sememe which depicts the main part of a sense [3].

Figure 2 illustrates an example of how words are annotated
with sememes in HowNet. The English word “husband” has
two senses, namely “married man” and “carefully use”. The
first sense is annotated with four sememes in HowNet, namely

Fig. 1 Different linguistic units in NLP studies
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Fig. 2 An example of how words are annotated with sememes in HowNet

a categorical sememe human and three subsidiary sememes
including family, male and spouse. The relations be-
tween the categorical sememe and three subsidiary sememes
are belong, modifier and modifier, respectively. The sec-
ond sense has only one sememe, i.e., the categorical sememe
economize.

Since HowNet was published, it has attracted considerable
research attention. Researchers have attempted to apply se-
memes to various NLP tasks involving information structure
annotation [4], word similarity computing [5], word sense dis-
ambiguation [6, 7], sentiment analysis [8–10], text classifica-
tion [11], etc. With more and more explorations, the effective-
ness and power of sememes have gradually manifested them-
selves, and HowNet has become more and more influential in
the field of NLP.

When research on NLP stepped into the era of deep learning,
however, studies into linguistic KBs including HowNet began
to fade away while data and corpora gradually stood on the cen-
ter stage of NLP. It was believed that more complicated neural
networks with more training data will always yield better per-
formance. On the contrary, linguistic KBs including HowNet
were thought to be difficultly compatible with neural models,
and they were taken into less and less consideration.

In recent years, more and more studies have reconsidered
the role of human knowledge played in artificial intelligence.
There is some influential work which incorporates linguistic
KBs into neural networks and obtains better system perfor-
mance [12–14]. In terms of HowNet, some attempts have also
been made to utilize it in neural network-based NLP. For ex-
ample, word representation learning [15, 16], language model-
ing [17], lexicon expansion [18], semantic composition [19],
sequence modeling [20], aspect extraction [21], reverse dictio-
nary [22] and textual adversarial attack [23].

At the same time, some studies on sememe KB expan-
sion have also been conducted. HowNet was entirely anno-
tated by linguistic experts. Its construction took more than two
decades. After its initial publication, the authors kept updat-
ing it by adding and revising sememe annotations of words and
phrases. Manual annotation and revision of HowNet is very
time-consuming and labor-intensive, and in fact, HowNet has
stopped updating since 2014. In this Internet era, however, more
and more new words and expressions are constantly emerging,
and meanings of existing words keep changing rapidly, which
render manual annotation and update even more difficult. To
tackle this issue, Xie et al. [24] for the first time present the task

of sememe prediction, which is aimed at automatically predict-
ing sememes for unannotated words and expanding HowNet.
Xie et al. [24] also propose two sememe prediction methods
based on collaborative filtering [25] and matrix factorization
[26] respectively. Following it, Jin et al. [27] incorporate Chi-
nese characters into sememe prediction to obtain better predic-
tion results, and Du et al. [28] utilize dictionary definitions to
predict sememes for words and phrases.

Additionally, some work focuses on extending HowNet to
other languages. HowNet contains Chinese and English words
and phrases only. To our best knowledge, other languages have
no sememe KBs like HowNet, which means NLP applications
of these languages cannot benefit from sememe knowledge. To
solve the problem, Qi et al. [29] propose the task of cross-
lingual sememe prediction, aiming to automatically predict se-
memes for words in another language and gradually build a se-
meme KB for a new language. Qi et al. [30] further propose to
build a multilingual sememe KB based on a multilingual ency-
clopedia dictionary, which can annotate sememes for words in
many languages simultaneously and is more efficient and eco-
nomical.

In this paper, we summarize recent NLP studies on sememes
and HowNet to illustrate the advances in utilizing sememes
in neural networks and automatically expanding sememe KBs.
Specifically, we first introduce recent applications of sememe
KBs in Section 2, then we describe some studies on mono-
lingual and cross-lingual sememe prediction and sememe KB
expansion in Section 3, and finally we draw a conclusion and
point out some future research directions of sememe KBs in
Section 4.

2 Application of sememe knowledge bases
Sememe KBs are quite special. Most linguistic KBs, such
as WordNet [31] and ConceptNet [32], take words as ele-
ments and contain word-level relations. For example, Word-
Net groups synonyms into synsets and incorporates many se-
mantic relations between synsets including “hypernym”, “hy-
ponym”, “antonym”, etc. Different from these linguistics KBs,
HowNet are based on a limited number of sememes and focus
on the compositional relations between words and the infra-
word sememes. The particularity of HowNet leads to its unique
strengths. First, the nature of HowNet that limited sememes
can represent unlimited meanings makes it useful in low data
regimes, and a typical use is improving word embeddings, es-
pecially for the low-frequency words [15, 16]. Second, it fo-
cuses on the semantic composition from sememes to words,
which endows sememes with special suitability for integration
into neural networks – words usually correspond to minimum
processing units of neural network models, and it should be rea-
sonable to incorporate sememes of a word into the processing
unit of the word in some way [17, 19].

There have been some studies on utilizing sememes in neu-
ral network-based NLP, and almost all of them ignore the tree
structures of sememes, instead, they regard sememes as seman-
tic labels of words or senses of words. In the following, we first
introduce two studies on using sememes to improve word rep-
resentation learning, then we detail two pieces of work which
utilize sememes in language modeling and semantic compo-
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sition respectively, and finally we briefly describe some other
studies into application of sememes.

2.1 Sememe-guided word representation learning
Recently, unsupervised word representation learning models,
especially CBOW and Skip-gram of word2vec [33], have
brought revolutionary change to NLP research. Some work has
tried to incorporate word-level linguistic KBs into word rep-
resentation learning to obtain better word embeddings [13, 32].
The attempts to use sememes KBs in word representation learn-
ing have also been made. Considering the difference between
HowNet and other word-level KBs, their incorporation ways
are also different.

Next, we elaborate on two representative studies on using se-
memes in word representation learning. But before that, we first
give a brief introduction to the two classical word representa-
tion learning models CBOW and Skip-gram [33], on which the
two studies are based.

2.1.1 CBOW and Skip-gram
The ideas of both CBOW and Skip-gram assume that the mean-
ing of a word is highly related to its contexts. The difference is
that CBOW supposes contexts should predict the target word
while Skip-gram uses the target word to predict its contexts.
Formally, for a word sequence H = {w0, . . . ,wN }, CBOW in-
tends to maximize the predictive probability:

LCBOW (H) =
N−K∑

n=K

log P(wn|wn−K , . . . ,wn−1,wn+1, . . . ,wn+K),

(1)
where K is the size of context sliding window, and

P(wn|wn−K , . . . ,wn−1,wn+1, . . . ,wn+K) =
exp(wT

c wn)∑
w′∈W exp(wT

c w′)
,

(2)
whereW is the vocabulary and wc represents the context vector:

wc =
1

2K

K∑

k=−K, k�0

wn+k. (3)

Similarly, Skip-gram maximizes the following predictive
probability:

LS G(H) =
N−K∑

n=K

log P(wn−K , . . . ,wn−1,wn+1, . . . ,wn+K |wn), (4)

where

P(wn−K , . . . ,wn−1,wn+1, . . . ,wn+K |wn) =
K∏

k=−K, k�0

P(wn+k |wn),

P(wn+k |wn) =
exp(wT

n+kwn)
∑

w′∈W exp(wT
n+kw′)

.

(5)
To accelerate the calculation of softmax functions, hierarchi-

cal softmax and negative sampling are proposed [33].

2.1.2 Post-processing word embeddings with sememes
We first introduce the first work which takes account of se-
memes in word representation learning [15]. In this work, word

embeddings are first learned by word2vec or any other meth-
ods, then sememe embeddings are learned using word embed-
dings, and finally word embeddings are substituted or enhanced
with sememe embeddings.

Specifically, sememe embeddings are learned using a simi-
lar way to CBOW, i.e., sememes of a word should predict the
word. Formally, the following predictive probability is maxi-
mized during training:

LSememe(H) =
N∑

n=0

log P(wn|X(wn)), (6)

where X(wn) is the sememe set of word wn, and P(wn|X(wn)) is
defined as

P(wn|X(wn)) =
exp(x̄(wn)Twn)∑

w′∈W exp(x̄(wn)Tw′)
, (7)

where x̄(wn) is the average embedding of wn’s sememes:

x̄(wn) =
1

|X(wn)|
∑

x∈X(wn)

x, (8)

where | · | represents the element number of a set. After obtain-
ing sememe embeddings, embeddings of some words, e.g., the
low-frequency words, can be substituted by the average of their
sememe embeddings:

w′n = x̄(wn). (9)

In the above-mentioned method, polysemy is disregarded,
and the sememe set of a word is the union of the sememe sets of
all its senses. Another sense-aware sememe embedding learn-
ing method is also proposed. Suppose the sense set of wn is
S(wn) = {sn

1, . . . , s
n
|S(wn)|}, and the sememe set of the i-th sense is

X(sn
i ), the maximized predictive probability is altered to

LSememe(H) =
N∑

n=0

log P(wn|sn
r ), (10)

where r = arg maxi cos(sn
i ,wc), i.e., the sense which is most se-

mantically similar to the context, and embedding of a sense is
defined as the average of its sememe embeddings:

sn
i =

1
|X(sn

i )|
∑

x∈X(sn
i )

x. (11)

2.1.3 Injecting sememes when learning word embeddings
The previous method separate the learning processes of word
and sememe embeddings, where word embeddings are fixed
during training sememe embeddings. Niu et al. [16] propose to
incorporate sememes during the learning process of word em-
beddings, in which way word embeddings will have been en-
hanced after training with a corpus. They actually present three
different models based on Skip-gram.

The first model is the simple sememe aggregation model
(SSA). In this model, polysemy is also disregarded, and the tar-
get word embedding is substituted by the average embedding
of its sememes in Eq. (5). Specifically,

P(wn+k |wn) =
exp(wT

n+kx̄(wn))
∑

w′∈W exp(wT
n+kw′)

, (12)
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The second model is the sememe attention over context
model (SAC). In this model, embedding of each context word,
namely wn+k in Eq. (5), is substituted by the weighted sum of
embeddings of its sememes, where the attention mechanism is
used to determine the weight of each sense. Formally,

wn+k =

|S(wn+k)|∑

i=1

a(sn+k
i ) · ŝn+k

i , (13)

where ŝn+k
i is a learnable vector representing another embed-

ding of the sense sn+k
i , a(sn+k

i ) is the attention weight calculated
by a softmax function:

a(sn+k
i ) =

exp(wT
n sn+k

i )
∑|S(wn+k)|

i′=1 exp(wT
n sn+k

i′ )
. (14)

The third model is named the sememe attention over target
model (SAT). This model adaptively selects the the most ap-
propriate sense of the target word. The target word embedding,
namely wn in Eq. (5), is substituted by the weighted sum of
embeddings of its sememes in a similar way to SAC. Formally,

wn =

|S(wn)|∑

i=1

a(sn
i ) · ŝn

i ,

a(sn
i ) =

exp(wT
c sn

i )
∑|S(wn)|

i′=1 . exp(wT
c sn

i′ )
,

(15)

where wc is still the context embedding defined in Eq. (3).
Empirical experiments have demonstrated that both methods,

i.e., post-processing word embeddings with sememes and in-
jecting sememes when learning word embeddings, improve the
word embedding quality [15, 16]. Moreover, both methods ob-
tain sense embeddings which can be used in word sense disam-
biguation and more precise representation of words in context.

2.2 Sememe-guided neural language modeling
Language modeling (LM) is aimed at predicting the next word
given previous context and measuring the likelihood of a word
sequence. LM is essential to understanding human languages
and has been extensively studied. Recently, neural language
models (NLMs), mostly based on recurrent neural networks
(RNNs), have profoundly promoted human language under-
standing of machines. They use RNNs to encode the previous
text into a vector and feed the vector to a classifier to predict
the next word in decoding. Gu et al. [17] propose a sememe-
driven language model (SDLM). Instead directly predicting the
next word in the decoding phase, SDLM predicts sememes first,
then predict senses and finally predict the next word.

In the following, we first briefly introduce the general frame-
work of RNN-based NLMs, and then we elaborate the SDLM.

2.2.1 General framework of RNN-based NLMs
Formally, still for the word sequence H = {w0, . . . ,wN }, when
predicting n-th word, the predictive probability is

P(wn|w0, . . . ,wn−1) =
exp(hT

n−1wn)
∑

w′∈W exp(hT
n−1w′)

, (16)

where hn−1 is the (n − 1)-th hidden state, which carries the se-
mantic information of previous n−1 words. It can be calculated

by
hn−1 = RNN(wn−1, hn−2,Ξn−1;Θ), (17)

whereΞn−1 represents other state variables corresponding to the
(n − 1)-th word, e.g., cell states of LSTM [34], and Θ signifies
the learnable parameters of the RNN. The optimization objec-
tive is to maximize the following predictive probability:

L(Θ) =
1
N

N∑

n=0

log P(wn|w0, . . . ,wn−1). (18)

2.2.2 Sememe-driven language model (SDLM)
In general NLM, the predictive probability of the n-th word is
directly calculated using the previous hidden state and the n-th
word’s embedding, as shown in Eq. (16). In contrast, SDLM
predicts sememes first, then senses, and finally words. Figure 3
gives an example showing how the next word is predicted in
SDLM.

First, the sememes of the n-th word are predicted. The pre-
dictive probability of the sememe x j is

q j = P(x j|w0, . . . ,wn−1) = σ(hT
n−1v j + b j), (19)

where σ is the sigmoid function, v j is a learnable parameter
vector and b j is is learnable scalar parameter.

Then the sense of the n-th word is predicted. Here a sememe
is regarded as an “expert” making predictions of senses, follow-
ing the theory of product of experts (PoE) [35]. Formally, the
predictive probability of the sense si given its sememe x j, is

P(x j)(si|w0, . . . ,wn−1) =
exp(q jCi, jφ

(x j)(hn−1, si))∑
si′ ∈Ŝ(x j) exp(q jCi′ , jφ(x j)(hn−1, si′ ))

,

(20)
where Ŝ(x j) is the set of senses annotated by the sememe x j,
Ci, j is a normalization constant, φ(x j)(·, ·) is a bilinear function
parameterized with a parameter matrix U j:

φ(x j)(hn−1, si) = hT
n−1U jsi. (21)

Then the predictive probability of the sense si with all its se-
memes as experts is as follows:

P(si|w0, . . . ,wn−1) ∝
∏

x j∈X(si)

P(x j)(si|w0, . . . ,wn−1)

=
exp(
∑

x j∈X(si) q jCi, jφ
(x j)(hn−1, si))∑

si′∈Ŝ(x j) exp(
∑

x j∈X(si) q jCi′ , jφ(x j)(hn−1, si′))

=
exp(
∑

x j∈X(si) q jCi, jhT
n−1U jsi)

∑
si′∈Ŝ(x j) exp(

∑
x j∈X(si) q jCi′ , jhT

n−1U jsi′ )
.

(22)

Finally we simply sum up the predictive probabilities of
senses of the nth word to obtain the word predictive probability:

P(wn|w0, . . . ,wn−1) =
∑

si∈S(wn)

P(si|w0, . . . ,wn−1). (23)

SDLM is highly adaptable. It can be combined with any other
NLMs with different encoding architectures. In fact, it can also
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Fig. 3 An example illustrating the architecture of SDLM

Fig. 4 The SCAS model

be used in the decoding phase of generative models. Empirical
experiments have been conducted using popular LSTM-based
NLMs. Experimental results demonstrate that SDLM can im-
prove the performance of existing NLMs and can also bring
enhancement of generative text quality in a headline generation
task [17].

2.3 Sememe-guided semantic composition modeling
Semantic composition (SC) refers to the phenomenon that the
meaning of a syntactically complex unit is a function of mean-
ings of the complex unit’s constituents and the combination
rule [36]. SC is regarded as the the fundamental truth of seman-
tics [37] by some linguists. In the field of NLP, SC has been ex-
plored in various tasks inlcuding language modeling [38], syn-
tactic parsing [39] and sentiment analysis [40, 41].

The most widely studied topic in SC is the composition from
words to multi-word expression (MWEs), more specifically,
the distributional vector representations of MWEs. Mitchell et
al. [42] propose a general framework to model MWE represen-
tation learning:

p = f (w1,w2,R,K), (24)

where f is the composition function, p denotes the embedding
of an MWE, w1 and w2 represent the embeddings of the MWE’s
two constituents, R stands for the combination rule, and K de-
notes external knowledge required to construct the semantics of
the MWE. Notice that this formula is for two-word MWEs but
can be easily extended to longer MWEs.

Almost all existing work focuses on designing a more com-
plicated composition function f , some takes the the combina-
tion rule R into consideration, and no previous work attempts to
use external knowledge K.

Qi et al. [19] makes the first attempt to incorporate exter-
nal linguistics knowledge, i.e., sememes, into modeling SC.
They propose two sememe-incorporated MWE representation
learning models. The first model is the semantic composition-
ality with aggregated sememe model (SCAS), which simply
concatenates the embeddings of the MWE’s constituents and
their sememes to obtain the MWE’s embedding. The second
is the semantic compositionality with mutual sememe atten-
tion model (SCMSA), which considers the mutual attention be-
tween a constituent’s sememes and the other constituent. Figs. 4
and 5 illustrate the architectures of the two models respectively.

2.3.1 The SCAS model
Formally, for an MWE p = {w1,w2}, its embedding can be ob-
tained by

p = tanh(Wr
c[w1 + w2;w′1 + w′2] + bc), (25)

where Wr
c is the combination rule-related composition matrix (r

represents a syntactic combination rule, e.g., adjective-noun),
bc is a learnable pamaemter vector, w

′
1 and w

′
2 represent the

aggregated sememe embeddings of w1 and w2 respectively:

w′1 =
∑

x j∈X(w1)

x j, w′2 =
∑

x j∈X(w2)

x j. (26)
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Fig. 5 The SCMSA model

2.3.2 The SCMSA model
A constituent may have multiple senses, and its meaning may
vary with the other constituent in an MWE. Accordingly, the
sememes of a constituent should have varying weights when
the constituent is combined with different constituents. Qi et
al. [19] propose the SCMSA model which employs the mu-
tual attention mechanism to dynamically adjust weights of se-
memes.

Formally, w2’s sememe embedding with attention can be ob-
tained by

e1 = tanh(Waw1 + ba),

a2, j =
exp (xT

j e1)
∑

x j′ ∈X(w2) exp (xT
j′e1)
,

w′2 =
∑

x j∈X(w2)

a2, jx j,

(27)

where Wa is the weight matrix and ba is a learnable parameter
vector. w′1 can be calculated similarly. Finally, the embedding
of the MWE can be obtained by Eq. (25).

Extensive intrinsic and extrinsic evaluations verify the effec-
tivenss of sememes in MWE representation learning [19]. They
also find that sememes are useful in measuring SC degree.

2.4 Other applications of sememe knowledge bases
In addition to the above-mentioned studies on utilizing sememe
KBs, more explorations of incorporating sememe KBs into neu-
ral models have been conducted. Luo et al. [21] use sememes
in unsupervised neural aspect extraction. They regard sememe
KBs as external semantic resources to enhance sentence rep-
resentation. Specifically, they incorporate sememes in a sen-
tence encoder via a hierarchical and a context-enhanced at-
tention mechanisms respectively, and then learn sentiment as-
pects by latent variables when decoding. Qin et al. [20] also
utilize sememes to enhance sentence representation learning.
But they directly inject sememes into RNN cells by three dif-
ferent methods and improve the sequence modeling ability of
RNNs. Zang et al. [23] take advantage of the nature of sememe
KBs that words with the same sememe annotations are semanti-
cally identical. They substitute the original words in a sentence
with the words with the same sememe annotations to gener-
ate adversarial examples and use them to attack neural models.
Experimental results also demonstrate that their sememe-based

word substitution is better than the substitution methods based
on other KBs like WordNet in terms of adversarial attacking.

3 Expansion of sememe knowledge bases
Although a large number of words and phrases has been ab-
sorbed into HowNet (127, 266 for Chinese, 118, 263 for En-
glish), more and more new words and expressions are emerging
in this Internet era. Meanwhile, the meanings of existing words
and expressions keep changing. Therefore, continuous update,
including expansion and revision, is necessary for HowNet and
other lexical linguistic KBs. Before 2014, HowNet was regu-
larly updated manually by its authors, although it was a lit-
tle strenuous. But after 2014, authors of HowNet has stopped
updating it, which makes HowNet experience difficulty when
being used in processing latest text. To tackle this issue, Xie
et al. [24] propose to automatically predict sememes for unan-
notated words, which can assist in human annotation in terms
of both efficiency and accuracy. Further, Jin et al. [27] incor-
porate Chinese character information into sememe prediction
to improve accuracy of sememe prediction. For another thing,
HowNet covers only two languages, and there are no sememe
KBs like HowNet for other languages. To solve the problem,
Qi et al. [29] for the first time present the task of cross-lingual
lexical sememe prediction, aiming to automatically predict se-
memes for words in another language. Qi et al. [30] propose a
more efficient and economical method in which a multilingual
sememe KB containing annotated words in many languages
will be built based on BabelNet [43], a multilingual encyclope-
dia dictionary. Notice that all these studies regard sememes as
semantic labels of words or phrases, and they only predict un-
structured sememes while disregarding the hierarchical struc-
tures and relations of sememes.

Next, we first introduce the two studies on monolingual se-
meme prediction [24, 27], then we present the two cross- or
multi-lingual sememe prediction studies.

3.1 Monolingual sememe prediction
3.1.1 Sememe prediction based on collaborative filtering and
matrix factorization
In this work, sememe prediction is actually modeled as a rec-
ommendation task, where words/phrases are regarded as users
and sememes are regarded as products. Predicting sememes for
a word is to recommend products to a new user. They adopt
two classical method of recommendation system, namely col-
laborative filtering [25] and matrix factorization [26].

The basic idea of collaborative filtering is to recommend sim-
ilar products to similar users. The first model, sememe predic-
tion with word embeddings (SPWE) is based on the idea and
predict similar sememes for similar words. They use word em-
beddings to measure the similarity between words. Formally,
they calculate the prediction score of each sememe for the given
target word w:

P(x j|w) =
∑

w′i∈W′
cos(w,w′i) ·Mi j · cri , (28)

whereW′ is the set of words with known sememe annotations,
M is a binary matrix denoting the annotation relations between
words and sememes, i.e., if the word wi is annotated by the
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sememe x j, Mi j = 1, otherwise Mi j = 0. To avoid noisy se-
memes brought by the semantically irrelevant words, an ex-
tra confidence factor cri is introduced, where c ∈ (0, 1) is a
hyper-parameter, ri is the descending rank of the word similar-
ity cos(w,w′i). By doing this, the semantically irrelevant words
will have little influence on sememe prediction.

As for the matrix factorization-based sememe prediction
with sememe embeddings model (SPSE), its idea is to learn
sememe embedding in the same distributional semantic space
as words by decomposing the word-sememe annotation matrix
M, and then predict sememes with close embeddings to the tar-
get words. Specifically, a set of pre-trained word embeddings
are used, and they are fixed to train sememe embeddings using
the following loss function:

L =
∑

wi∈W′,x j∈X
(wT

i x j + bi + b′j −Mi j)2, (29)

where bi and b′j are two scalar parameters. After obtaining se-
meme embeddings, the prediction score of a sememe is propor-
tional to the cosine similarity between its embedding and the
target word’s embedding:

P(x j|w) ∝ cos(w, x j). (30)

The two models can combined to an ensemble model sim-
ply by totaling their sememe prediction scores up. The final
sememe prediction result for a target word is the sememes with
prediction scores higher than a threshold.

3.1.2 Incorporating Chinese characters into sememe predic-
tion
The previous method uses word embeddings to represent the se-
mantics of words, which only carry the external semantic infor-
mation for words, i.e., contexts. In fact, internal information is
complementary to external information and also useful in cap-
turing word semantics, especially for the low-frequency words
with little available external information. In this work, Jin et
al. [27] attempt to utilize internal information of words, namely
Chinese characters, to conduct sememe prediction.

They also propose two models, the first is the sememe predic-
tion with word-to-character filtering model (SPWCF). The idea
of this model is essentially collaborative filtering, too. Different
from SPWE, it uses the Chinese character-based feature to mea-
sure similarity between words. Specifically, it considers words
as similar if they contain the same characters at the same posi-
tions. Three positions are included, i.e., BEGIN (corresponding
to the first character in a word), END (corresponding to the last
character in a word), and MIDDLE (corresponding to the other
characters in a word).

Formally, for a target word w = c1c2 . . . c|w|, the character-
based sememe prediction score is first calculated according to
statistics of all the annotated words, which is defined as:

P(x j|c, p) ∝
∑

wi∈W′∧c∈πp(wi) Mi j∑
wi∈W′∧c∈πp(wi) |X(wi)| , (31)

where p ∈ {B,E,M} refers to a position, πp(w) denotes the set
of characters at the position p of the word w, e.g., πB(w) = {c1},
πE(w) = {c|w|} and πM(w) = {c2, . . . , c|w|−1}. Then the sememe

prediction score of a word can be obtained by aggregating the
character-based sememe prediction scores:

P(x j|w) ∝
∑

p∈{B,E,M}

∑

c∈πp(w)

P(x j|c, p). (32)

SPWCF is simple and effective, but it ignores the relations
between sememes, just like SPWE. Following SPSE, Jin et
al. [27] propose the sememe prediction with character and se-
meme embeddings model (SPCSE). It also decomposes the
word-sememe annotation matrix to learn sememe embeddings,
but it uses the most representative character embeddings rather
than word embeddings, considering low-frequency words usu-
ally have poor word embeddings. Specifically, it uses the pre-
trained character embeddings from [44], which provides each
character with multiple embeddings c1, . . . , cN(c). It adaptively
selects the embedding of a character of a word which is clos-
est to current sememe embedding as the the most representa-
tive character embedding and uses it to substitute the word em-
bedding. Formally, given the target word w = c1c2 . . . c|w| and
a sememe x j, the most representative character embedding is
picked by:

k̂, r̂ = arg min
k,r

[1 − cos(cr
k, x j)], (33)

where k̂ and r̂ represent the indices of character and its em-
bedding of the most representative character embedding of a
word, respectively. Then the most representative character em-
beddings are used in decomposing the word-sememe annota-
tion matrix:

L =
∑

wi∈W′ ,x j∈X
(cr̂

k̂
· x j + bc

k̂
+ b′j −Mi j)2, (34)

where bc
k̂

and b′j are two scalar parameters. After obtaining the
sememe embeddings, the prediction score of a sememe x j for
the target word w is

P(x j|w) ∝ cos(cr̂
k̂
, x j). (35)

SPWCF and SPCSE can be combined, and then further com-
bined with the ensemble of SPWE and SPSE, because all of
them utilize different information. As illustrated in Fig. 6, for
high-frequency words with good word embeddings, the two
models using external semantic information SPWE and SPSE
are used, while for the low-frequency words with poor word
embeddings, all the four models are employed to better predict
sememes.

3.2 Cross-lingual sememe prediction
The fact that HowNet covers only two languages restricts its
wide application, and also prevents better understanding and
utilizing the languages without sememe KBs. Qi et al. [29] for
the first time propose the task of Cross-lingual Lexical Sememe
Prediction (CLSP) to tackle this issue, aiming to transfer the
sememe annotations from a language with sememe annotations
(the source language) to another language without sememe an-
notations (the target language). However, CLSP can conduct
sememe predictions for one language at one time, which is
inefficient when coping with multiple languages. To solve the
problem, Qi et al. [30] put forward another way, i.e., building
a multilingual sememe KB based on an existing multilingual
encyclopedia dictionary BabelNet [43], which is much more
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Fig. 6 The ensemble sememe prediction model

efficient and economical. Next we detail the two methods one
by one.

3.2.1 Cross-lingual lexical sememe prediction
Qi et al. [29] propose a two-step cross-lingual lexical sememe
prediction method. The first step is bilingual word represen-
tation learning, which is composed of three modules includ-
ing (1) monolingual word representation learning, which is in-
tended for learning embeddings of words in source and tar-
get languages respectively; (2) cross-lingual word embedding
alignment, which is aimed at aligning the bilingual word em-
beddings into a unified semantic space; and (3) sememe knowl-
edge incorporation whose objective is to incorporate sememes
of the words in the source language into word representations.
The second step is sememe prediction based on bilingual word
embeddings in a unified semantic space, which is similar to
SPWE.

The training loss of the first step has three corresponding
parts:

L = Lmono +Lcross +Lsememe. (36)

For the monolingual word representation learning part Lmono,
it comprises two independent subparts for the source and target
languages respectively:

Lmono = LS
mono +LT

mono. (37)

For either language, we use Skip-gram to learn monolingual
word embeddings using a monolingual corpus. Therefore, both
LS

mono and LT
mono are in the similar form to Eq. (4).

The second part of the training loss, Lcross, is also composed
of two subparts:

Lcross = λsLseed + λmLmatch, (38)

where λs and λm are hyperparameters for controlling relative
weightings of the two terms, Lseed and Lmatch correspond to
alignment by seed lexicon and by self-matching respectively.
Lseed encourages word embeddings of translation pairs in a
seed lexicon D to be close, which is achieved via a L2 regu-
larizer:

Lseed =
∑

〈wS
s ,wT

t 〉∈D
‖wS

s − wT
t ‖2, (39)

where wS
s and wT

t indicate a pair of words in source and target
languages in the seed lexicon respectively. The self-matching is
based on the assumption that each word in the target language
(target word) should be matched to a single word in the source
language (source word) or a special empty word, and vice versa.

The goal of self-matching is to find the matched source
(target) word for each target (source) word and maximize the
matching probabilities for all the matched word pairs. The loss
of this part can be formulated as:

Lmatch = LT2S
match +LS 2T

match, (40)

where LT2S
match is the term for target-to-source matching and

LS 2T
match is for source-to-target matching. Next, we detail the

target-to-source matching loss LT2S
match, and the source-to-target

matching is similar. Suppose mt represents the index of the
source word that the target word wT

t matches with. mt = 0 signi-
fies the matched source word is the special empty word. LT2S

match
is defined as

LT2S
match = − log P(CT |CS ) = − log

∑

m

P(CT ,m|CS ), (41)

where CT and CS denote the corpora in the target and source
languages respectively, m = {m1,m2, . . . ,m|WT |} (WT is the vo-
cabulary of the target language). We assume that the matching
processes of target words are independent of each other. There-
fore,

P(CT ,m|CS ) =
∏

wT∈CT

P(wT ,m|CS ) =
|WT |∏

t=1

P(wT
t |wS

mt
)c(wT

t ),

(42)
where wS

mt
is the source word that wT

t matches with, and c(wT
t )

is the number of times wT
t occurs in the target corpus.

The third module of the bilingual word representation learn-
ing is to incorporate sememes of source words to improve word
embeddings. Two different incorporation approaches are pro-
posed. The first approach is straightforward, which makes em-
beddings of source words with similar sememe annotations
close. This approach actually introduces semantically similar
relations between words with the help of sememes, and hence it
is named word relation-based approach. They group the source
words sharing a certain number of sememes and force the em-
beddings of the words in a group to be closer in a similar way
to [13]. Specifically, let ŵS

i be the adjusted word embedding
of the source word wS

i and Syn(wS
i ) denote the sememe-shared

word group containing wS
i . Then the loss function is:

Lsememe =
∑

wS
i ∈WS

[
αi‖wS

i − ŵS
i ‖2 +

∑

wS
j ∈Syn(wS

i )

βi j‖ŵS
i − ŵS

j ‖2
]
,

(43)
where α and β are hyperparameters controlling the relative
weights of the two terms. The second approach is named se-
meme embedding-based approach, which is inspired by the ma-
trix factorization-based sememe prediction method SPSE. Dif-
ferent from SPSE, word embeddings are adjusted with sememe
embeddings rather than fixed. Formally,

Lsememe =
∑

wS
s ∈WS ,x j∈X

(wS
s · x j + bs + b′j −MS

s j)
2, (44)

where MS is the word-sememe annotation matrix of the source
language, and bs and b′j are two learnable scalar parameter. In
this way, the relations between words and sememes are injected
into the word embeddings.
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Fig. 7 Annotating sememes for a BabelNet synset. The synset comprises
words in different languages expressing the same meaning “the man a woman
is married to”, and they share the four sememes on the right part

After obtaining the word embeddings of the source and target
languages in a unified semantic space, cross-lingual sememe
prediction can be conducted in a similar way to SPWE:

P(x j|wT
t ) =

∑

wS
s ∈WS

cos(wS
s ,w

T
t ) ·MS

s j · crs . (45)

3.2.2 Building a multilingual sememe KB based on BabelNet
BabelNet is a multilingual encyclopedic dictionary and com-
prises over 15 million BabelNet synsets. Each BabelNet synset
is composed of words in multiple languages with the same
meaning, i.e., multilingual synonyms, and they should have
the same sememe annotation. Thus, building a multilingual se-
meme KB by annotating sememes for BabelNet synsets can ac-
tually provide sememe annotations for words in multiple lan-
guages simultaneously (Fig. 7 shows an example).

Qi et al. [30] build a seed sememe KB BabelSememe by man-
ually annotating sememes for more than 15 thousand BabelNet
synsets. They also propose the task of sememe prediction for
BabelNet synsets (SPBS), aiming to automatically predict se-
memes for unannotated BabelNet synsets and gradually expand
the seed KB.

They propose two models for SPBS, which utilize different
information of synsets in BabelNet to predict sememes. The
first model is SPBS with Semantic Representations (SPBS-
SR). It is based on the semantic representations of synsets,
which bears the semantic meanings of synsets. Specifically,
they use the NASARI embeddings [45] provided by BabelNet,
and adopts the similar prediction way to SPWE when given the
target synset b:

P(x|b) =
∑

b′∈B′
cos(b, b′) · IX(b′)(x) · crb′ , (46)

where B′ is the set of synsets with known sememe annotations,
and IX(b′)(x) is a indicator function indicating whether a se-
memes x is annotated to the synset b′.

The second model uses the semantic relations between
synsets in BabelNet and is named SPBS with Relational Rep-
resentations (SPBS-RR). BabelNet contains many relations be-
tween synsets, and at the same time, HowNet includes relations
between sememes. The relation between a pair of synsets is
consistent with the relation between their respective sememes.
Figure 8 gives an example. By introducing an extra relation
“have_sememe” between synsets and their sememes, plus the
synset-synset and sememe-sememe relations, all the synsets
and sememes are connected together to form a semantic graph.
Sememe prediction can be transformed to be a entity prediction

Fig. 8 An example of how relations between BabelNet synsets are consistent
with the relations between respective sememes

task of knowledge graph, where the head entity (a target synset)
and the relation (“have_sememe”) are given and the tail entity
are supposed to be predicted. They adopt a classical knowledge
graph embedding method TransE [46] to learn the relational
representations of synsets and sememes, and the training loss
is:

L1 =
∑

(h,r,t)∈G
[τ + d(h + r, t) − d(h + r, t′)]+, (47)

where [x]+ = max(0, x), scalar τ is a hyper-parameter, (h, r, t)
is a triplet in the semantic graph G in which h, t can be a synset
or sememe and r is a relation, (h, r, t′) is a corrupted triplet, and
d(x, y) is L2 distance function:

d(x, y) = ‖x − y‖2. (48)

In addition, they introduce a special semantic equivalence re-
lation between a synset and all its sememes, based on the fact
that the meaning of a synset should be equal to the sum of its
sememes’ meanings. The corresponding loss is

L2 =
∑

b′∈B′
‖b′ + rs −

∑

x∈X(b′)

x‖2, (49)

where rs denotes the semantic equivalence relation. The overall
training loss is as follows:

L = λ1L1 + λ2L2, (50)

where λ1 and λ2 are hyper-parameters controlling relative
weights of the two losses. By optimizing the loss function, rela-
tional representations of all synsets, sememes and relations will
be obtained. Then the sememe prediction score of a sememe x
for a target synset b is

P(x|b) ∝ d(b + rh, x), (51)

where rh is the “have_sememe” relation.
These two models SPBS-SR and SPBS-RR utilize different

information and can be combined together to obtain better pre-
diction results.

4 Conclusion and future directions
The importance of human knowledge to artificial intelligence,
especially NLP, has been recognized by more and more stud-
ies. Sememe KBs have unique advantages in incorporation into
deep neural networks and alleviating their bad performance in
low-data regimes. Therefore, many studies on better utilizing
sememes in deep learning-based NLP have been conducted in
recent years and empirically demonstrated the effectiveness of
sememes.

We believe that sememes will prove more powerful in future
work. First, the structures of existing sememe annotations are
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rarely utilized, which capture more useful semantic informa-
tion. It is challenging to incorporating structural sememes into
neural networks, but it is also worthwhile. Second, the useful-
ness of sememes in low-data regimes has not been extensively
exploited. The combination of sememes and few-shot learning
or meta-learning is exciting and promising. Finally, the lan-
guage universality of sememes is also worth exploring in some
cross-lingual tasks.

As for expansion of sememe KBs, the work on building a
multilingual sememe KB based on BabelNet is pioneering and
will be seminal. It proposes a totally feasible and efficient way
to annotate sememes for words and phrases in many languages.
There are many research directions worthing exploration, e.g.,
using definitions to predict sememe for synsets and representa-
tion learning of synsets and sememes. In addition, the structures
of sememes are also disregarded in previous sememe prediction
work. It is a difficult but meaningful task to conduct structural
sememe prediction.

There are some useful HowNet-related resources which are
convenient for researches. OpenHowNet [47] is an open-source
toolbox which provides some easy-to-use Python APIs of ac-
cessing data of HowNet. There is also a website of the same
name supporting online search and display of sememes of
words. Besides, we create a paper list named SCPapers which
comprises all the must-read papers on sememe computation.
Both OpenHowNet and SCPapers can be found on the GitHub
page of THUNLP (Natural Language Processing Lab at Ts-
inghua University).
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