Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2020, Vol. 14 Issue (2): 248-257   https://doi.org/10.1007/s11705-019-1853-9
  本期目录
Hierarchical ZSM-5 zeolite with radial mesopores: Preparation, formation mechanism and application for benzene alkylation
Darui Wang, Hongmin Sun, Wei Liu, Zhenhao Shen, Weimin Yang()
State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Shanghai Research Institute of Petrochemical Technology, Sinopec, Shanghai 201208, China
 全文: PDF(1642 KB)   HTML
Abstract

Hierarchical ZSM-5 zeolite with radial mesopores is controllably synthesized using piperidine in a NaOH solution. The piperidine molecules enter the zeolite micropores and protect the zeolite framework from extensive desilication. The areas containing fewer aluminum atoms contain fewer piperidine protectant molecules and so they dissolve first. Small amounts of mesopores are then gradually generated in areas with more aluminum atoms and more piperidine protectant. In this manner, radial mesopores are formed in the ZSM-5 zeolite with a maximal preservation of the micropores and active sites. The optimal hierarchical ZSM-5 zeolite, prepared with a molar ratio of piperidine to zeolite of 0.03, had a mesopore surface area of 136 m2·g−1 and a solid yield of 80%. The incorporation of the radial mesopores results in micropores that are interconnected which shortened the average diffusion path length. Compared to the parent zeolite, the hierarchical ZSM-5 zeolite possesses more accessible acid sites and has a higher catalytic activity and a longer lifetime for the alkylation of benzene.

Key wordshierarchical ZSM-5 zeolite    protective desilication    piperidine    radial mesopores    benzene alkylation
收稿日期: 2019-02-25      出版日期: 2020-03-24
Corresponding Author(s): Weimin Yang   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2020, 14(2): 248-257.
Darui Wang, Hongmin Sun, Wei Liu, Zhenhao Shen, Weimin Yang. Hierarchical ZSM-5 zeolite with radial mesopores: Preparation, formation mechanism and application for benzene alkylation. Front. Chem. Sci. Eng., 2020, 14(2): 248-257.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-019-1853-9
https://academic.hep.com.cn/fcse/CN/Y2020/V14/I2/248
Fig.1  
Samples SiO2/Al2O3 SBETa) Smesob) Vmicrob) Vmesoc)
/(mol·mol?1) /(m2·g–1) /(m2·g–1) /(cm3·g–1) /(cm3·g–1)
PZ 220 323 26 0.16 0.06
AT 152 344 115 0.10 0.45
PI 0.02 169 391 157 0.12 0.40
PI 0.03 191 423 136 0.13 0.32
PI 0.04 202 405 112 0.13 0.27
Tab.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Sample Conversion/% Selectivity/% Xylene/ppm Diethylbenzene/%
PZ 47.4 85.2 731 14.2
PI 0.03 59.3 86.6 483 13.0
Tab.2  
Fig.9  
1 A Corma. Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions. Chemical Reviews, 1995, 95(3): 559–614
https://doi.org/10.1021/cr00035a006
2 C S Cundy, P A Cox. The hydrothermal synthesis of zeolites: History and development from the earliest days to the present time. Chemical Reviews, 2003, 103(3): 663–702
https://doi.org/10.1021/cr020060i
3 A Corma. From microporous to mesoporous molecular sieve materials and their use in catalysis. Chemical Reviews, 1997, 97(6): 2373–2420
https://doi.org/10.1021/cr960406n
4 Y S Tao, H Kanoh, L Abrams, K Kaneko. Mesopore-modified zeolites: Preparation, characterization, and applications. Chemical Reviews, 2006, 106(3): 896–910
https://doi.org/10.1021/cr040204o
5 H Zheng, D Zhai, L Zhao, C Zhang, S Yu, J Gao, C Xu. Insight into the contribution of isolated mesopore on diffusion in hierarchical zeolites: The effect of temperature. Industrial & Engineering Chemistry Research, 2018, 57(15): 5453–5463
https://doi.org/10.1021/acs.iecr.8b00515
6 J Han, J Cho, J C Kim, R Ryoo. Confinement of supported metal catalysts at high loading in the mesopore network of hierarchical zeolites, with access via the microporous windows. ACS Catalysis, 2018, 8(2): 876–879
https://doi.org/10.1021/acscatal.7b04183
7 L Y Jia, M Raad, S Hamieh, J Toufaily, T Hamieh, M M Bettahar, G Mauviel, M Tarrighi, L Pinard, A Dufour. Catalytic fast pyrolysis of biomass: Superior selectivity of hierarchical zeolites to aromatics. Green Chemistry, 2017, 19(22): 5442–5459
https://doi.org/10.1039/C7GC02309J
8 J C Groen, T Bach, U Ziese, A M Paulaime-van Donk, K P de Jong, J A Moulijn, J Pérez-Ramírez. Creation of hollow zeolite architectures by controlled desilication of Al-zoned ZSM-5 crystals. Journal of the American Chemical Society, 2005, 127(31): 10792–10793
https://doi.org/10.1021/ja052592x
9 K Zhang, M L Ostraat. Innovations in hierarchical zeolite synthesis. Catalysis Today, 2016, 264: 3–15
https://doi.org/10.1016/j.cattod.2015.08.012
10 I Schmidt, A Boisen, E Gustavsson, K Stahl, S Pehrson, S Dahl, A Carlsson, C J H Jacobsen. Carbon nanotube templated growth of mesoporous zeolite single crystals. Chemistry of Materials, 2001, 13(12): 4416–4418
https://doi.org/10.1021/cm011206h
11 Y Tao, H Kanoh, K Kaneko. ZSM-5 monolith of uniform mesoporous channels. Journal of the American Chemical Society, 2003, 125(20): 6044–6045
https://doi.org/10.1021/ja0299405
12 K Zhu, K Egeblad, C H Christensen. Mesoporous carbon prepared from carbohydrate as hard template for hierarchical zeolites. European Journal of Inorganic Chemistry, 2007, 2007(25): 3955–3960
https://doi.org/10.1002/ejic.200700218
13 F Xiao, L Wang, C Yin, K Lin, Y Di, J Li, R Xu, D Su, R Schlögl, T Yokoi, T Tatsumi. Catalytic properties of hierarchical mesoporous zeolites templated with a mixture of small organic ammonium salts and mesoscale cationic polymers. Angewandte Chemie International Edition, 2006, 45(19): 3090–3093
https://doi.org/10.1002/anie.200600241
14 Z Zhao, Y Liu, H Wu, X Li, M He, P Wu. Hydrothermal synthesis of mesoporous titanosilicate with the aid of amphiphilic organosilane. Journal of Porous Materials, 2010, 17(4): 399–408
https://doi.org/10.1007/s10934-009-9316-1
15 H Liu, S Zhang, S Xie, W Zhang, W Xin, S Liu, L Xu. Synthesis, characterization, and catalytic performance of hierarchical ZSM-11 zeolite synthesized via dual-template route. Chinese Journal of Catalysis, 2018, 39(1): 167–180
https://doi.org/10.1016/S1872-2067(17)62984-X
16 X Wang, H Chen, F Meng, F Gao, C Sun, L Sun, S Wang, L Wang, Y Wang. CTAB resulted direct synthesis and properties of hierarchical ZSM-11/5 composite zeolite in the absence of template. Microporous and Mesoporous Materials, 2017, 243: 271–280
https://doi.org/10.1016/j.micromeso.2017.02.054
17 J C Groen, J C Jansen, J A Moulijn, J Pérez-Ramírez. Optimal aluminum-assisted mesoporosity development in MFI zeolites by desilication. Journal of Physical Chemistry B, 2004, 108(35): 13062–13065
https://doi.org/10.1021/jp047194f
18 J C Groen, L A A Peffer, J A Moulijn, J Pérez-Ramírez. Mechanism of hierarchical porosity development in MFI zeolites by desilication: The role of aluminium as a pore‐directing agent. Chemistry (Weinheim an der Bergstrasse, Germany), 2005, 11(17): 4983–4994
https://doi.org/10.1002/chem.200500045
19 M Rutkowska, I Pacia, S Basąg, A Kowalczyk, Z Piwowarska, M Duda, K A Tarach, K Góra-Marek, M Michalik, U Díaz, L Chmielarz. Catalytic performance of commercial Cu-ZSM-5 zeolite modified by desilication in NH3-SCR and NH3-SCO processes. Microporous and Mesoporous Materials, 2017, 246: 193–206
https://doi.org/10.1016/j.micromeso.2017.03.017
20 S Oruji, R Khoshbin, R Karimzadeh. Preparation of hierarchical structure of Y zeolite with ultrasonic-assisted alkaline treatment method used in catalytic cracking of middle distillate cut: the effect of irradiation time. Fuel Processing Technology, 2018, 176: 283–295
https://doi.org/10.1016/j.fuproc.2018.03.035
21 J C Groen, T Sano, J A Moulijn, J Pérez-Ramírez. Alkaline-mediated mesoporous mordenite zeolites for acid-catalyzed conversions. Journal of Catalysis, 2007, 251(1): 21–27
https://doi.org/10.1016/j.jcat.2007.07.020
22 J Pérez-Ramírez, S Abello, L A Villaescusa, A Bonilla. Toward functional clathrasils: Size- and composition-controlled octadecasil nanocrystals by desilication. Angewandte Chemie International Edition, 2008, 47(41): 7913–7917
https://doi.org/10.1002/anie.200802393
23 D Verboekend, J Pérez-Ramírez. Desilication mechanism revisited: Highly mesoporous all-silica zeolites enabled through pore-directing agents. Chemistry (Weinheim an der Bergstrasse, Germany), 2011, 17(4): 1137–1147
https://doi.org/10.1002/chem.201002589
24 K Sadowska, A Wach, Z Olejniczak, P Kustrowski, J Datka. Hierarchic zeolites: Zeolite ZSM-5 desilicated with NaOH and NaOH/tetrabutylamine hydroxide. Microporous and Mesoporous Materials, 2013, 167(3): 82–88
https://doi.org/10.1016/j.micromeso.2012.03.045
25 J C Groen, L A A Peffer, J A Moulijn, J Pérez-Ramírez. Mesoporosity development in ZSM-5 zeolite upon optimized desilication conditions in alkaline medium. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2004, 241(1-3): 53–58
https://doi.org/10.1016/j.colsurfa.2004.04.012
26 J Pérez-Ramírez, D Verboekend, A Bonilla, S Abello. Zeolite catalysts with tunable hierarchy factor by pore-growth moderators. Advanced Functional Materials, 2009, 19(24): 3972–3979
https://doi.org/10.1002/adfm.200901394
27 M Milina, S Mitchell, P Crivelli, D Cooke, J Pérez-Ramírez. Mesopore quality determines the lifetime of hierarchically structured zeolite catalysts. Nature Communications, 2014, 5(1): 3922–3931
https://doi.org/10.1038/ncomms4922
28 D Wang, L Zhang, L Chen, H Wu, P Wu. Postsynthesis of mesoporous ZSM-5 zeolite by piperidine-assisted desilication and its superior catalytic properties in hydrocarbon cracking. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(7): 3511–3521
https://doi.org/10.1039/C4TA06438K
29 D Wang, L Xu, P Wu. Hierarchical, core-shell meso-ZSM-5@mesoporous aluminosilicate-supported Pt nanoparticles for bifunctional hydrocracking. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(37): 15535–15545
https://doi.org/10.1039/C4TA02740J
30 H Kalipcilar, A Culfaz. Influence of nature of silica source on template-free synthesis of ZSM-5. Crystal Research and Technology, 2001, 36(11): 1197–1207
https://doi.org/10.1002/1521-4079(200111)36:11<1197::AID-CRAT1197>3.0.CO;2-D
31 K S W Sing, D H Everett, R A W Haul, L Moscou, R A Pierotti, J Rouquerol, V T Siemieniewska. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure and Applied Chemistry, 1985, 57(4): 603–619
https://doi.org/10.1351/pac198557040603
32 J C Groen, J A Moulijn, J Pérez-Ramírez. Desilication: On the controlled generation of mesoporosity in MFI zeolites. Journal of Materials Chemistry, 2006, 16(22): 2121–2131
https://doi.org/10.1039/B517510K
33 W C Yoo, X Zhang, M Tsapatsis, A Stein. Synthesis of mesoporous ZSM-5 zeolites through desilication and re-assembly processes. Microporous and Mesoporous Materials, 2012, 149(1): 147–157
https://doi.org/10.1016/j.micromeso.2011.08.014
34 J Pérez-Ramírez, S Abelló, A Bonilla, J C Groen. Tailored mesoporosity development in zeolite crystals by partial detemplation and desilication. Advanced Functional Materials, 2009, 19(1): 164–172
https://doi.org/10.1002/adfm.200800871
35 E Gornicka, J E Rode. Raczynska, E D, Dasiewicz B, Dobrowolski J C. Vibrational Spectroscopy, 2004, 36: 105–115
36 G T Kokotailo, S L Lawton, D H Olson, W M Meier. Structure of synthetic zeolite ZSM-5. Nature, 1978, 272(5652): 437–438
https://doi.org/10.1038/272437a0
37 K Zhu, J Sun, J Liu, L Wang, H Wan, J Hu, Y Wang, C H F Peden, Z Nie. Solvent evaporation assisted preparation of oriented nanocrystalline mesoporous MFI zeolites. ACS Catalysis, 2011, 1(7): 682–690
https://doi.org/10.1021/cs200085e
38 Y Liu, W Zhang, Z Liu, S Xu, Y Wang, Z Xie, X Han, X Bao. Direct observation of the mesopores in ZSM-5 zeolites with hierarchical porous structures by laser-hyperpolarized 129Xe NMR. Journal of Physical Chemistry C, 2008, 112(39): 15375–15381
https://doi.org/10.1021/jp802813x
39 R Schumacher, H G Karge. Sorption kinetics study of the diethylbenzene isomers in MFI-type zeolites. Microporous and Mesoporous Materials, 1999, 30(2-3): 307–314
https://doi.org/10.1016/S1387-1811(99)00041-4
40 J Zhou, Z Liu, Y Wang, H Gao, L Li, W Yang, Z Xie, Y Tang. Enhanced accessibility and utilization efficiency of acid sites in hierarchical MFI zeolite catalyst for effective diffusivity improvement. RSC Advances, 2014, 4(82): 43752–43755
https://doi.org/10.1039/C4RA03986F
41 W Yang, Z Wang, H Sun, B Zhang. Advances in development and industrial applications of ethylbenzene processes. Chinese Journal of Catalysis, 2016, 37(1): 16–26
https://doi.org/10.1016/S1872-2067(15)60965-2
42 S K Saxena, N Viswanadham. Hierarchically nano porous nano crystalline ZSM-5 for improved alkylation of benzene with bio-ethanol. Applied Materials Today, 2016, 5: 25–32
https://doi.org/10.1016/j.apmt.2016.09.006
43 Z Lei, L Liu, C Dai. Insight into the reaction mechanism and charge transfer analysis for the alkylation of benzene with propylene over H-β zeolite. Molecular Catalysis, 2018, 454: 1–11
https://doi.org/10.1016/j.mcat.2018.05.010
44 C H Christensen, K Johannsen, I Schmidt, C H Christensen. Catalytic benzene alkylation over mesoporous zeolite single crystals: Improving activity and selectivity with a new family of porous materials. Journal of the American Chemical Society, 2003, 125(44): 13370–13371
https://doi.org/10.1021/ja037063c
[1] FCE-19010-OF-WD_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed