Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2019, Vol. 13 Issue (4): 784-802   https://doi.org/10.1007/s11705-019-1858-4
  本期目录
A new approach for scheduling of multipurpose batch processes with unlimited intermediate storage policy
Nikolaos Rakovitis1, Nan Zhang1, Jie Li1(), Liping Zhang2
1. Centre for Process Integration, School of Chemical Engineering and Analytical Science, The University of Manchester, Manchester, M13 9PL, UK
2. Department of Industrial Engineering, School of Machinery and Automation, Wuhan University of Science and Technology, Wuhan 430081, China
 全文: PDF(1188 KB)   HTML
Abstract

The increasing demand of goods, the high competitiveness in the global marketplace as well as the need to minimize the ecological footprint lead multipurpose batch process industries to seek ways to maximize their productivity with a simultaneous reduction of raw materials and utility consumption and efficient use of processing units. Optimal scheduling of their processes can lead facilities towards this direction. Although a great number of mathematical models have been developed for such scheduling, they may still lead to large model sizes and computational time. In this work, we develop two novel mathematical models using the unit-specific event-based modelling approach in which consumption and production tasks related to the same states are allowed to take place at the same event points. The computational results demonstrate that both proposed mathematical models reduce the number of event points required. The proposed unit-specific event-based model is the most efficient since it both requires a smaller number of event points and significantly less computational time in most cases especially for those examples which are computationally expensive from existing models.

Key wordsscheduling    multipurpose batch processes    simultaneous transfer    mixed-integer linear programming
收稿日期: 2018-12-01      出版日期: 2019-12-04
Corresponding Author(s): Jie Li   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2019, 13(4): 784-802.
Nikolaos Rakovitis, Nan Zhang, Jie Li, Liping Zhang. A new approach for scheduling of multipurpose batch processes with unlimited intermediate storage policy. Front. Chem. Sci. Eng., 2019, 13(4): 784-802.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-019-1858-4
https://academic.hep.com.cn/fcse/CN/Y2019/V13/I4/784
Fig.1  
Fig.2  
Unit Maximum capacity /mu Minimum capacity /mu αi/h βi/h
J1 100 0 3 0.02
J2 100 0 2 0.01
Tab.1  
Fig.3  
Fig.4  
Fig.5  
Example Model Event points CPU time /s RMILP /cu MILP /cu Discrete variables Continuous variables Equations
1 SF 4 0.094 1800.00 1656.16 20 78 115
(H= 8 h) T-S 4 0.156 3300.83 1511.66 20 78 121
Tab.2  
Fig.6  
Fig.7  
Task Processing unit αi βi Bimin Bimax
1 1 1.333 0.01333 0 100
2 2 1.333 0.01333 0 150
3 3 1.000 0.00500 0 200
4 4 0.667 0.00445 0 150
5 5 0.667 0.00445 0 150
Tab.3  
Task Processing unit αi βi Bimin Bimax
1 1 0.667 0.00667 0 100
2 2 1.334 0.02664 0 50
3 3 1.334 0.01665 0 80
4 2 1.334 0.02664 0 50
5 3 1.334 0.01665 0 80
6 2 0.667 0.01332 0 50
7 3 0.667 0.008325 0 80
8 4 1.334 0.00666 0 200
Tab.4  
Fig.8  
Task Processing unit αi βi Bimin Bimax
1 1 0.667 0.00667 0 100
2 1 1.000 0.01000 0 100
3 2 1.333 0.01333 0 100
4 3 1.333 0.00889 0 150
5 2 0.667 0.00667 0 100
6 3 0.667 0.00445 0 150
7 2 1.333 0.01330 0 100
8 3 1.333 0.00889 0 150
9 4 2.000 0.00667 0 300
10 5 1.333 0.00667 20 200
11 6 1.333 0.00667 20 200
Tab.5  
Fig.9  
Task Processing unit αi βi Bimin Bimax
1 1 1.333 0.01333 0 100
2 2 1.333 0.01333 0 150
3 3 1.000 0.00500 0 200
4 4 0.667 0.00445 0 150
5 5 0.667 0.00445 0 150
6 6 1.000 0.00500 0 200
Tab.6  
Fig.10  
Task Processing unit αi βi Bimin Bimax
1 1 1.333 0.01333 0 100
2 2 1.333 0.01333 0 150
3 3 1.000 0.00500 0 200
4 4 0.667 0.00445 0 150
5 5 0.667 0.00445 0 150
6 6 1.000 0.00500 0 200
7 7 1.333 0.01333 0 100
8 8 1.333 0.01333 0 150
Tab.7  
Fig.11  
Task Processing unit αi βi Bimin Bimax
1?3 1 1.333 0.01333 0 100
4?6 2 1.333 0.01333 0 150
7?9 3 1.000 0.00500 0 200
10?12 4 0.667 0.00445 0 150
13?15 5 0.667 0.00445 0 150
16?18 6 1.000 0.00500 0 200
19?21 7 1.333 0.01333 0 100
22?24 8 1.333 0.01333 0 150
Tab.8  
Fig.12  
Task Processing unit αi βi Bimin Bimax
1 1 6.000 0 0 200
2 2 5.000 0 0 100
3 3 9.000 0 0 100
4 4 2.000 0 0 50
5 5 3.000 0 0 50
6 6 4.000 0 0 50
7 7 2.000 0 0 100
Tab.9  
Fig.13  
Task Processing unit αi βi Bimin Bimax
1 1 1.000 0 0 10
2 2 3.000 0 0 4
3 3 1.000 0 0 2
4 4 2.000 0 0 10
Tab.10  
Fig.14  
Task Processing unit αi βi Bimin Bimax
1 1 1.500 0 0 150
2 2 4.500 0 0 60
3 3 1.500 0 0 30
4 4 1.500 0 0 30
5 5 3.000 0 0 150
Tab.11  
Fig.15  
Task Processing unit αi βi Bimin Bimax
1 1 17.333 0.866 0 20
2 2 2.667 0.133 0 20
3 3 2.667 0.133 0 20
4 4 4.000 0.200 0 20
5 5 5.333 0.266 0 20
6 6 5.333 0.266 0 20
Tab.12  
Fig.16  
Task Processing unit αi βi Bimin Bimax
1 1 1.666 0.03335 0 40
2 2 2.333 0.08335 0 20
3 3 0.667 0.06600 0 5
4 4 2.667 0.008325 0 40
Tab.13  
Task Processing unit αi βi Bimin Bimax
1 1 1.666 0.03335 0 40
2 2 2.333 0.08335 0 20
3 3 0.333 0.06800 0 2.5
4 4 2.667 0.008325 0 40
Tab.14  
Example Model Event points CPU time /s RMILP
/cu
MILP /cu Discrete variables Continuous variables Constraints
1a SF 4 0.078 2000.00 1840.18 20 78 109
(H= 8 h) M2 2 0.125 2000.00 1840.18 10 40 57
M1 2 0.062 2000.00 1840.18 10 47 58
1b SF 5 0.094 3000.00 2628.19 25 97 137
(H= 10 h) M2 3 0.109 3000.00 2628.19 15 59 85
M1 3 0.047 3000.00 2628.19 15 68 90
1c SF 6 0.109 4000.00 3463.62 30 116 165
(H= 12 h) M2 4 0.124 4000.00 3463.62 20 78 113
M1 4 0.078 4000.00 3463.62 20 89 122
1d SF 9 1.29 6601.65 5038.05 45 173 249
(H= 16 h) M2 7 1.54 6601.65 5038.05 35 135 197
M1 7 1.37 6601.65 5038.05 35 152 218
Tab.15  
Example Model Event points CPU time /s RMILP
/cu
MILP /cu Discrete variables Continuous variables Constraints
2a SF 4 (Dn = 0) 0.078 1730.87 1498.57 32 136 211
(H= 8 h) M2 4 (Dn = 0) 0.141 1730.87 1498.57 32 136 213
M1 4 (Dn = 0) 0.062 1730.87 1498.57 32 126 180
2b SF 6 (Dn = 0) 0.889 2730.66 1943.17 48 202 331
(H= 10 h) M2 6 (Dn = 0) 0.889 2730.66 1943.17 48 202 331
M1 6 (Dn = 0) 0.827 2730.66 1943.17 48 184 276
SF 6 (Dn = 1) 5.41 2730.66 1962.69 88 242 737
M2 6 (Dn = 1) 5.10 2730.66 1962.69 88 242 739
M1 6 (Dn = 1) 2.78 2730.66 1962.69 88 224 316
2c SF 7 (Dn= 0) 2.39 3301.03 2658.52 56 235 388
(H= 12 h) M2 7 (Dn = 0) 2.78 3301.03 2658.52 56 235 390
M1 7 (Dn = 0) 2.86 3301.03 2658.52 56 213 324
2d SF 8 (Dn = 0) 5.97 4291.68 3738.38 64 268 447
(H= 16 h) M2 8 (Dn = 0) 6.30 4291.68 3738.38 64 268 449
M1 8 (Dn = 0) 3.94 4291.68 3738.38 64 242 372
Tab.16  
Example Model Event points CPU time /s RMILP
/cu
MILP /cu Discrete variables Continuous variables Constraints
3a SF 5 (Dn = 0) 0.218 2100.00 1583.44 55 235 390
(H= 8 h) M2 5 (Dn = 0) 0.343 2100.00 1583.44 55 235 390
M1 5 (Dn = 0) 0.358 2100.00 1583.44 55 229 346
3b SF 7 (Dn = 0) 6.24 3369.69 2305.55 77 327 560
(H= 10 h) M2 7 (Dn = 0) 6.42 3369.69 2305.55 77 327 560
M1 7 (Dn = 0) 10.23 3369.69 2293.46 77 315 494
SF 8 (Dn = 1) 3159 3618.64 2358.20 165 450 1433
M2 8 (Dn = 1) 3141 3618.64 2358.20 165 450 1433
M1 8 (Dn = 1) 892 3618.64 2358.20 165 435 659
3c SF 7 (Dn = 0) 0.437 3465.63 3041.27 77 327 560
(H= 12 h) M2 7 (Dn = 0) 0.406 3465.63 3041.27 77 327 560
M1 7 (Dn = 0) 0.483 3465.63 3041.27 77 315 494
3d SF 10 (Dn = 0) 7.80 5225.86 4262.80 110 465 815
(H= 16 h) M2 10 (Dn = 0) 6.99 5225.86 4262.80 110 465 715
M1 10 (Dn = 0) 8.81 5225.86 4262.80 110 444 716
Tab.17  
Example Model Event points CPU time /s RMILP
/cu
MILP
/cu
Discrete variables Continuous variables Constraints
4 SF 10 24.18 6601.65 4305.46 60 232 345
(H= 16 h) M2 7 27.63 6601.65 4305.46 42 163 246
M1 7 35.88 6601.65 4305.46 42 188 279
5a SF 8 0.141 1500.00 1414.18 64 250 369
(H= 16 h) M2 3 0.156 1500.00 1414.18 24 95 142
M1 3 0.156 1500.00 1414.18 24 116 159
5b SF 14 0.343 4500.00 4414.80 112 436 651
(H= 32 h) M2 9 0.250 4500.00 4414.80 72 281 424
M1 9 0.296 4500.00 4414.80 72 332 501
6a SF 57 1.61 25000.00 24927.50 570 2225 3354
(H= 144 h) M2 50 6.13 25000.00 24927.50 500 1952 2951
M1 50 1.90 25000.00 24927.50 500 2310 3634
6b SF 111 13.84 52000.00 51933.10 1110 4331 6540
(H= 288 h) M2 104 25.72 52000.00 51933.10 1040 4058 6137
M1 104 12.14 52000.00 51933.10 1040 4794 7576
6c SF 219 40.82 106000.00 105944.00 2190 8543 12912
(H= 576 h) M2 212 8.30 106000.00 105944.00 2120 8270 12509
M1 212 27.97 106000.00 105944.00 2120 9762 15460
7 SF 49 33.81 21000.00 20935.30 1176 4853 8540
(H= 128 h) M2 42 43.54 21000.00 20935.30 1008 4160 7329
M1 42 33.59 21000.00 20935.30 1008 3724 5768
Tab.18  
Example Model Event points CPU time /s RMILP
/cu
MILP /cu Discrete variables Continuous variables Constraints
8 SF 5 0.109 14.00 10.00 20 82 117
(H= 6 h) M2 3 0.078 14.00 10.00 12 40 73
M1 3 0.062 14.00 10.00 12 46 79
9 SF 5 0.125 300.00 210.00 25 114 160
(H= 9 h) M2 3 0.109 300.00 210.00 15 60 100
M1 3 0.062 300.00 210.00 15 80 105
10 SF 5 0.109 80.00 58.99 30 123 175
(H= 76 h) M2 2 0.125 80.00 58.99 12 51 73
M1 2 0.046 80.00 58.99 12 61 76
11 SF 6 0.109 400.00 400.00 24 110 153
(H= 10 h) M2 4 0.109 400.00 400.00 16 74 105
M1 4 0.093 400.00 400.00 16 95 129
12 SF 10 0.203 400.00 400.00 40 182 257
(H= 5 h) M2 8 0.093 400.00 400.00 32 146 209
M1 8 0.093 400.00 400.00 32 183 265
Tab.19  
Example Model Event points CPU time /s RMILP
/h
MILP /h Discrete variables Continuous variables Constraints
1a (H= 50 h) SF 14 11.45 24.24 27.88 70 268 394
Ds4=2000 M2 12 5.30 25.36 27.88 60 230 342
M1 12 6.96 24.24 27.88 60 254 383
1b (H= 100 h) SF 23 7.50 48.47 52.07 115 439 646
Ds4=4000 M2 21 5.70 50.06 52.07 105 401 594
M1 21 4.81 48.47 52.07 105 443 671
2a(H= 50 h) SF 9 96.00 10.78 19.34 72 301 515
Ds8=200 M2 9 28.78 10.78 19.34 72 301 515
Ds9=200 M1 9 46.58 18.68 19.34 72 265 425
2b(H= 100 h) SF 19 3600a) 45.57 46.31 152 631 1105
Ds8=500 M2 19 3600b) 45.57 46.31 152 631 1107
Ds9=400 M1 19 3600c) 45.57 46.31 152 555 905
3a (H= 50 h) SF 7 0.187 11.07 13.37 77 327 572
Ds12=100 M2 7 0.250 11.07 13.37 77 327 572
Ds13=200 M1 7 0.374 11.25 13.37 77 306 501
3b (H= 50 h) SF 10 0.515 12.50 17.03 110 465 827
Ds12=250 M2 10 0.374 12.76 17.03 110 465 827
Ds13=250 M1 10 0.359 14.27 17.03 110 435 723
Tab.20  
Fig.17  
Fig.18  
Event point CPU time /s
SF M1
(Dn = 0) (Dn = 1) (Dn = 0) (Dn = 1)
n = 1 ? ? 0.093 0.078
n = 2 ? ? 0.062 0.078
n = 3 ? ? 0.078 0.031
n = 4 0.031 0.062 0.078 0.187
n = 5 0.062 0.094 0.218 0.405
n = 6 0.078 0.078 1.36 9.70
n = 7 0.046 0.188 35.88 700
n = 8 0.250 0.421 532.5 ?
n = 9 1.20 19.6 ? ?
n = 10 24.18 2027 ? ?
n = 11 698 ? ? ?
Total 2771 1281
Tab.21  
1 E Kondili, C C Pantelides, R W H Sargent. A general algorithm for short-term scheduling of batch operations-I MILP formulation. Computers & Chemical Engineering, 1993, 17(2): 211–227
https://doi.org/10.1016/0098-1354(93)80015-F
2 C Pantelides. Unified frameworks for optimal process planning and scheduling. Proceedings of the Second Conference on Foundations of Computer Aided Operations, 1994, 253–274
3 C A Floudas, X Lin. Continuous-time versus discrete-time approaches for scheduling of chemical processes: A review. Computers & Chemical Engineering, 2004, 28(11): 2109–2129 doi:10.1016/j.compchemeng.2004.05.002
4 C A Méndez, J Cerdá, I E Grossmann, I Harjukoski, M Fahl. State-of-the-art review of optimization methods for short-term scheduling of batch processes. Computers & Chemical Engineering, 2006, 30(6-7): 913–946
https://doi.org/10.1016/j.compchemeng.2006.02.008
5 J Li, N Susarla, I A Karimi, M A Shaik, C A Floudas. An analysis of some unit-specific event-based models for the short-term scheduling of noncontinuous processes. Industrial & Engineering Chemistry Research, 2010, 49(2): 633–647
https://doi.org/10.1021/ie801879n
6 C T Maravelias. General framework and modeling approach classification for chemical production scheduling. AIChE Journal. American Institute of Chemical Engineers, 2012, 58(6): 1812–1828
https://doi.org/10.1002/aic.13801
7 I Harjunkoski, C Maravelias, P Bongers, P Castro, S Engell, I Grossmann, J Hooker, C Méndez, G Sand, J Wassick. Scope for industrial application of production scheduling models and solution methods. Computers & Chemical Engineering, 2014, 62(5): 161–193
https://doi.org/10.1016/j.compchemeng.2013.12.001
8 S Velez, C T Maravelias. Multiple and nonuniform time grids in discrete-time MIP models for chemical production scheduling. Computers & Chemical Engineering, 2013, 53(11): 70–85
https://doi.org/10.1016/j.compchemeng.2013.01.014
9 H Lee, C T Maravelias. Discrete-time mixed integer programming models for short-term scheduling in multipurpose environments. Computers & Chemical Engineering, 2017, 107: 171–183
https://doi.org/10.1016/j.compchemeng.2017.06.013
10 J M Pinto, I E Grossmann. A continuous time mixed integer linear programming model for short-term scheduling of multistage batch plants. Industrial & Engineering Chemistry Research, 1995, 34(9): 3037–3051
https://doi.org/10.1021/ie00048a015
11 A Sundaramoorthy, I A Karimi. A simpler better slot-based continuous-time formulation for short-term scheduling in multipurpose batch plants. Chemical Engineering Science, 2005, 60(10): 2679–2702
https://doi.org/10.1016/j.ces.2004.12.023
12 N Susarla, J Li, I Karimi. A novel approach to scheduling multipurpose batch plants using unit-slots. AIChE Journal. American Institute of Chemical Engineers, 2010, 56(7): 1859–1879
https://doi.org/10.1002/aic.12120
13 X Zhang, R W H Sargent. The optimal operation of mixed production facilities-A general formulation and some approaches for the solution. Computers & Chemical Engineering, 1996, 20(6-7): 897–904
https://doi.org/10.1016/0098-1354(95)00186-7
14 P Castro, A P F D Barbosa-Póvoa, H Matos. An improved RTN continuous-time formulation for the short-term scheduling of multipurpose batch plants. Industrial & Engineering Chemistry Research, 2001, 40(9): 2059–2068
https://doi.org/10.1021/ie000683r
15 C T Maravelias, I E Grossmann. New general continuous-time state-task network formulation for short-term scheduling of multipurpose batch plants. Industrial & Engineering Chemistry Research, 2003, 42(13): 3056–3074
https://doi.org/10.1021/ie020923y
16 M G Ierapetritou, C A Floudas. Effective continuous-time formulation for short-term scheduling. 1. Multipurpose batch processes. Industrial & Engineering Chemistry, 1998, 37(11): 4341–4359
https://doi.org/10.1021/ie970927g
17 J Li, C Floudas. Optimal event point determination for short-term scheduling of multipurpose batch plants via unit-specific event-based continuous-time approaches. Industrial & Engineering Chemistry Research, 2010, 49(16): 7446–7469
https://doi.org/10.1021/ie901842k
18 Q H Tang, J Li, C A Floudas, M X Deng, Y B Yan, Z H Xi, P H Chen, J Y Kong. Optimization framework for process scheduling of operation-dependent automobile assembly lines. Optimization Letters, 2012, 6(4): 797–824
https://doi.org/10.1007/s11590-011-0303-5
19 J Li, X Xiao, C A Floudas. Integrated gasoline blending and order delivery operations: Part I. Short-term scheduling and global optimization for single and multi-period operations. AIChE Journal. American Institute of Chemical Engineers, 2016, 62(6): 2043–2070
https://doi.org/10.1002/aic.15168
20 C A Méndez, J Cerdá. Optimal scheduling of a resource-constrained multiproduct batch plant supplying intermediates to nearby end-product facilities. Computers & Chemical Engineering, 2000, 24(2-7): 369–376
https://doi.org/10.1016/S0098-1354(00)00482-8
21 C Hui, A Gupta, H A J van der Meulen. A novel MILP formulation for short-term scheduling of multi-stage multi-product batch plants with sequence-dependent constraints. Computers & Chemical Engineering, 2000, 24(12): 2705–2717
https://doi.org/10.1016/S0098-1354(00)00623-2
22 C A Méndez, J Cerdá. An MILP continuous-time framework for short-term scheduling of multipurpose batch processes under different operation strategies. Optimization and Engineering, 2003, 4(1-2): 7–22
https://doi.org/10.1023/A:1021856229236
23 J Li, I A Karimi. Scheduling gasoline blending operations from recipe determination to shipping using unit slots. Industrial & Engineering Chemistry Research, 2011, 50(15): 9156–9174
https://doi.org/10.1021/ie102321b
24 M A Shaik, S L Janak, C A Floudas. Continuous-time models for short-term scheduling of multipurpose batch plants: A comparative study. Industrial & Engineering Chemistry Research, 2006, 45(18): 6190–6209
https://doi.org/10.1021/ie0601403
25 M Shaik, C Floudas. Novel unified modeling approach for short-term scheduling. Industrial & Engineering Chemistry Research, 2009, 48(6): 2947–2964
https://doi.org/10.1021/ie8010726
26 M Shaik, R Vooradi. Short-term scheduling of batch plants: Reformulation for handling material transfer at the same event. Industrial & Engineering Chemistry, 2017, 56(39): 11175–11185
https://doi.org/10.1021/acs.iecr.7b00519
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed