Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2015, Vol. 9 Issue (3): 349-358   https://doi.org/10.1007/s11705-015-1523-5
  本期目录
Facile synthesis and enhanced visible-light photocatalytic activity of Ti3+-doped TiO2 sheets with tunable phase composition? ?
Xiaojie Zhang1,2,Lei Wang1,Shuqing Chen3,Yi Huang1,Zhuonan Song1,Miao Yu1,*()
1. Department of Chemical Engineering and Catalysis for Renewable Fuels (CReF) Center, University of South Carolina, Columbia, SC 29208, USA
2. Department of Metallurgical and Chemical Engineering, Jiyuan Vocational and Technical Collage, Jiyuan 459000, China
3. State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
 全文: PDF(956 KB)   HTML
Abstract

Ti3+-doped TiO2 nanosheets with tunable phase composition (doped TiO2 (A/R)) were synthesized via a hydrothermal method with high surface area anatase TiO2 nanosheets TiO2 (A) as a substrate, structure directing agent, and inhibitor; the activity was evaluated using a probe reaction-photocatalytic CO2 conversion to methane under visible light irradiation with H2 as an electron donor and hydrogen source. High-resolution transmission electron microscope (HRTEM), field emission scanning electron microscope, UV-Vis diffuse reflectance spectra, and X-ray diffraction (XRD) etc., were used to characterize the photocatalysts. XRD and HRTEM measurements confirmed the existence of anatase-rutile phase junction, while Ti3+ and single-electron-trapped oxygen vacancy in the doped TiO2 (A/R) photocatalyst were revealed byelectron paramagnetic resonance (EPR) measurements. Effects of hydrothermal synthesis temperature and the amount of added anatase TiO2 on the photocatalytic activity were elucidated. Significantly enhanced photocatalytic activity of doped TiO2 (A/R) was observed; under the optimized synthesis conditions, CH4 generation rate of doped TiO2 (A/R) was 2.3 times that of Ti3+-doped rutile TiO2.

Key wordsTi3+-doped TiO2    photocatalytic CO2 conversion    visible light irradiation
收稿日期: 2015-04-17      出版日期: 2015-09-30
Corresponding Author(s): Miao Yu   
 引用本文:   
. [J]. Frontiers of Chemical Science and Engineering, 2015, 9(3): 349-358.
Xiaojie Zhang,Lei Wang,Shuqing Chen,Yi Huang,Zhuonan Song,Miao Yu. Facile synthesis and enhanced visible-light photocatalytic activity of Ti3+-doped TiO2 sheets with tunable phase composition? ?. Front. Chem. Sci. Eng., 2015, 9(3): 349-358.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-015-1523-5
https://academic.hep.com.cn/fcse/CN/Y2015/V9/I3/349
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Hydrothermal temperature /K Phase SBET /m2·g−1
373 A, R 69.8
393 A, R 53.0
423 A, R 47.9
453 A, R 25.9
488 A, R 21.2
Tab.1  
Mass ratio of TiO2/Ti Phase Nominal wt-% of anatase1 Practical wt-% of anatase2 SBET /m2·g-1
0 R 0 3.0
1/6 A, R 9% 3% 4.1
1/2 A, R 23% 18% 6.2
5/3 A, R 50% 92% 25.9
5 A, R 75% 94% 45.3
A 100% 89.7
Tab.2  
Fig.6  
Fig.7  
Fig.8  
1 Yu  K, Curcic  I, Gabriel  J, Tsang  S. Recent Advances in CO2 Capture and Utilization. ChemSusChem, 2008, 1: 893–899
2 Chen  X, Shen  S, Guo  L, Mao  S. Semiconductor-based photocatalytic hydrogen generation. Chemical Reviews, 2010, 110: 6503–6570
3 Habisreutinger  S, Schmidt-Mende  L, Stolarczyk  J. Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angewandte Chemie International Edition, 2013, 52: 2–39
4 Varghese  O, Paulose  M, LaTempa  T, Grimes  C. High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels. Nano Letters, 2009, 9: 731–737
5 Zhang  X, Li  J, Lu  X, Tang  C, Lu  G. Visible light induced CO2 reduction and Rh B decolorization over electrostatic-assembled AgBr/palygorskite. Journal of Colloid and Interface Science, 2012, 377: 277–283
6 Vaughn  II D, Schaak  R. Hybrid CuO-TiO2?xNx hollow nanocubes for photocatalytic conversion of CO2 into methane under solar irradiation. Angewandte Chemie International Edition, 2012, 51: 3915–3918
7 Tamaki  Y, Morimoto  T, Koike  K, Ishitani  O. Photocatalytic CO2 reduction with high turnover frequency and selectivity of formic acid formation using Ru(II) multinuclear complexes. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109: 15673–15678
8 Asahi  R, Morikawa  T, Ohwaki  T, Aoki  K, Taga  Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science, 2001, 293: 269–271
9 Zuo  F, Wang  L, Wu  T, Zhang  Z, Borchardt  D, Feng  P. Self-doped Ti3+ enhanced photocatalyst for hydrogen production under visible light. Journal of the American Chemical Society, 2010, 132: 11856–11857
10 Xie  K, Umezawa  N, Zhang  N, Reunchan  P, Zhang  Y J, Ye  J H. Self-doped SrTiO3−δ photocatalyst with enhanced activity for artificial photosynthesis under visible light. Energy & Environmental Science, 2011, 4: 4211–4219
11 Zuo  F, Bozhilov  K, Dillon  R, Wang  L, Smith  P, Zhao  X, Bardeen  C, Feng  P. Active facets on titanium(III)-doped TiO2: An effective strategy to improve the visible-light photocatalytic activity. Angewandte Chemie International Edition, 2012, 51: 6223–6226
12 Chen  Q, Ma  W, Chen  C, Ji  H, Zhao  J. Anatase TiO2 mesocrystals enclosed by (001) and (101) facets: Synergistic effects between Ti3+ and facets for their photocatalytic performance. Chemistry (Weinheim an der Bergstrasse, Germany), 2012, 18: 12584–12589
13 Zheng  Z, Huang  B, Meng  X, Wang  J, Wang  S, Lou  Z, Wang  Z, Qin  X, Zhang  X, Dai  Y. Metallic zinc-assisted synthesis of Ti3+ self-doped TiO2 with tunable phase composition and visible-light photocatalytic activity. Chemical Communications, 2013, 49: 868–870
14 Wang  J, Zhang  P, Li  X, Zhu  J, Li  H. Synchronical pollutant degradation and H2 production on a Ti3+-doped TiO2 visible photocatalyst with dominant (001) facets. Applied Catalysis B: Environmental, 2013, 134-135: 198–204
15 Xing  M, Fang  W, Nasir  M, Ma  Y, Zhang  J, Anpo  M. Self-doped Ti3+-enhanced TiO2 nanoparticles with a high-performance photocatalysis. Journal of Catalysis, 2013, 297: 236–243
16 Zou  X, Liu  J, Su  J, Zuo  F, Chen  J, Feng  P. Facile synthesis of thermal- and photostable titania with paramagnetic oxygen vacancies for visible-light photocatalysis. Chemistry (Weinheim an der Bergstrasse, Germany), 2013, 19: 866–2873
17 Justicia  I, Ordejón  P, Canto  G, Mozos  J, Fraxedas  J, Battiston  G, Gerbasi  R, Figueras  A. Designed self-doped titanium oxide thin films for efficient visible-light photocatalysis. Advanced Materials, 2002, 14: 1399–1402
18 Pan  X, Yang  M, Fu  X, Zhang  N, Xu  Y. Defective TiO2 with oxygen vacancies: Synthesis, properties and photocatalytic applications. Nanoscale, 2013, 5: 3601–3614
19 Xing  M, Zhang  J, Chen  F, Tian  B. An economic method to prepare vacuum activated photocatalysts with high photo-activities and photosensitivities. Chemical Communications, 2011, 47: 4947–4949
20 Wang  G, Wang  H, Ling  Y, Tang  Y, Yang  X, Fitzmorris  R, Wang  C, Zhang  J, Li  Y. Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Letters, 2011, 11: 3026–3033
21 Kimmel  G, Petrik  N. Tetraoxygen on reduced TiO2 (110): Oxygen adsorption and reactions with bridging oxygen vacancies. Physical Review Letters, 2008, 100: 196102
22 Ohtsu  N, Kodama  K, Kitagawa  K, Wagatsuma  K. Comparison of surface films formed on titanium by pulsed Nd:YAG laser irradiation at different powers and wavelengths in nitrogen atmosphere. Applied Surface Science, 2010, 256: 4522–4526
23 Kong  M, Li  Y, Chen  X, Tian  T, Fang  P, Zheng  F, Zhao  X. Tuning the relative concentration ratio of bulk defects to surface defects in TiO2 nanocrystals leads to high photocatalytic efficiency. Journal of the American Chemical Society, 2011, 133: 16414–16417
24 Hamal  D, Klabunde  K. Heterogeneous photocatalysis over high-surface-area silica-supported silver halide photocatalysts for environmental remediation. In: Erickson  L, Koodali  R, Richards  R, eds. ACS Symposium Series, Washington DC, 2010, 191–205
25 Kawahara  T, Konishi  Y, Tada  H, Tohge  N, Nishii  J, Ito  S. A patterned TiO2(anatase)/TiO2(rutile) bilayer-type photocatalyst: Effect of the anatase/rutile junction on the photocatalytic activity. Angewandte Chemie International Edition, 2002, 41: 2811–2813
26 Zhang  J, Xu  Q, Feng  Z, Li  M, Li  C. Importance of the relationship between surface phases and photocatalytic activity of TiO2. Angewandte Chemie International Edition, 2008, 47: 1766–1769
27 Yang  C, Yu  Y, van der Linden  B, Wu  J, Mul  G. Artificial photosynthesis over crystalline TiO2-based catalysts: Fact or fiction?  Journal of the American Chemical Society, 2010, 132: 8398–8406
28 Uner  D, Oymak  M. On the mechanism of photocatalytic CO2 reduction with water in the gas phase. Catalysis Today, 2012, 181: 82–88
29 Han  X, Kuang  Q, Jin  M, Xie  Z, Zheng  L. Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties. Journal of the American Chemical Society, 2009, 131: 3152–3153
30 Xiang  Q, Lv  K, Yu  J. Pivotal role of fluorine in enhanced photocatalytic activity of anatase TiO2 nanosheets with dominant (001) facets for the photocatalytic degradation of acetone in air. Applied Catalysis B: Environmental, 2010, 96: 557–564
31 Kuznetsov  V, Serpone  N. On the origin of the spectral bands in the visible absorption spectra of visible-light-active TiO2 specimens analysis and assignments. Journal of Physical Chemistry C, 2009, 113: 15110–15123
32 Ismail  A, Bahnemann  D. Mesoporous titania photocatalysts: preparation, characterization and reaction mechanisms. Journal of Materials Chemistry, 2011, 21: 11686–11707
33 Anderson  C, Bard  A. Improved photocatalytic activity and characterization of mixed TiO2/SiO2 and TiO2/Al2O3 materials. Journal of Physical Chemistry B, 1997, 101: 2611–2616
34 Francisco  M, Mastelaro  V. Inhibition of the anatase-rutile phase transformation with addition of CeO2 to CuO-TiO2 system: Raman spectroscopy, X-ray diffraction, and textural studies. Chemistry of Materials, 2002, 14: 2514–2518
35 Zhu  M, Chen  P, Liu  M. Graphene oxide enwrapped Ag/AgX (X= Br, Cl) nanocomposite as a highly efficient visible-light plasmonic photocatalyst. ACS Nano, 2011, 5: 4529–4536
36 Spurr  R, Meyers  H. Quantitative analysis of anatase-rutile mixtures with an X-ray diffractometer. Analytical Chemistry, 1957, 29: 760–776
37 Dhumal  S, Daulton  T, Jiang  J, Khomami  B, Biswas  P. Synthesis of visible light-active nanostructured TiOx (x<2) photocatalysts in a flame aerosol reactor. Applied Catalysis B: Environmental, 2009, 86: 145–151
38 Hurum  D, Agrios  A, Gray  K, Rajh  T, Thurnauer  M. Explaining the enhanced photocatalytic activity of degussa P25 mixed-phase TiO2 using EPR. Journal of Physical Chemistry B, 2003, 107: 4545–4549
39 Sugawara  M. Theory of spontaneous-emission lifetime of Wannier excitons in mesoscopic semiconductor quantum disks. Physical Review B: Condensed Matter and Materials Physics, 1995, 51: 10743
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed