Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2008, Vol. 2 Issue (3) : 236-241    https://doi.org/10.1007/s11705-008-0034-z
Phenolic rigid organic filler/isotactic polypropylene composites. I. Preparation
QI Dongming1, YANG Lei2, WU Minghua2, LIN Heming2, NITTA Kohhei3
1.Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University; Graduate School of Natural Science & Technology, Kanazawa University; 2.Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University; 3.Graduate School of Natural Science & Technology, Kanazawa University;
 Download: PDF(327 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A novel phenolic rigid organic filler (KT) was melt-mixed with an isotactic polypropylene (iPP) to prepare a series of PP/KT composites, with or without maleic anhydride grafted polypropylene (MAPP) as compatilizer. The evolution of filler morphology during melt-mixing and melt-pressure processes was monitored by scanning electron microscope (SEM) and polarized optical microscope (POM). The influences of shear force, pressure time, filler content and MAPP concentration on the final filler dispersion were studied. We found that this rigid organic filler readily melted and dispersed homogenously into the iPP matrix through a fission-fusion process during the melt-mixing process. Thus a balanced dispersion, which was closely related to shear force and MAPP concentration, can be achieved. During the melt-pressure process, parts of the filler particles combined gradually through a coalescence process. However, the incorporation of MAPP can effectively inhibit the tendency to coalesce and refine the filler particles sizes into nanoscale. Thus, a series of PP/KT composites with controllable filler particles size and narrow size distribution can be obtained just by adjusting process conditions and MAPP concentration. In addition, due to the in-situ formation mechanism, the filler phase possessed a typical solid true-spherical shape.
Issue Date: 05 September 2008
 Cite this article:   
YANG Lei,QI Dongming,NITTA Kohhei, et al. Phenolic rigid organic filler/isotactic polypropylene composites. I. Preparation[J]. Front. Chem. Sci. Eng., 2008, 2(3): 236-241.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-008-0034-z
https://academic.hep.com.cn/fcse/EN/Y2008/V2/I3/236
1 Yuan Q, Jiang W, Zhang H X, Yin J H, An L J, Li R K Y . Brittle-ductile transition in high-density polyethylene/glass-beadblends: effects of interparticle distance and temperature. J Polym Sci: Polym Phys, 2001, 39: 1855–1859.
doi:10.1002/polb.1160
2 Liang J Z, Li R K . Brittle–ductile transitionin polypropylene filled with glass beads. Polymer, 1999, 40: 3191–3195.
doi:10.1016/S0032‐3861(98)00532‐1
3 Wilbrink M W L, Argon A S, Cohen R E, Weinberg M . Toughenabilityof Nylon-6 with CaCO3 filler particles: newfindings and general principles. Polymer, 2001, 42: 10155–10180.
doi:10.1016/S0032‐3861(01)00548‐1
4 Fellahi S, Chikhi N, Bakar M . Modification of epoxy resin with kaolin as a tougheningagent. J Appl Polym Sci, 2001, 82: 861–878.
doi:10.1002/app.1918
5 Radonjič G, Šmit I . Phase morphology and mechanicalproperties of iPP/SEP blends. J Polym Sci:Polym Phy 2001, 39: 566–580.
doi:10.1002/1099‐0488(20010301)39:5<566::AID‐POLB1030>3.0.CO;2‐P
6 Tang L X, Qu B J, Shen X F . Mechanical properties, morphological structure, and thermalbehavior of dynamically photocrosslinked PP/EPDM blends. J Appl Polym Sci, 2004, 92: 3371–3380.
doi:10.1002/app.20340
7 Kim J Y, Chun B C . Effect of high density polyethyleneaddition and testing temperature on the mechanical and morphologicalproperties of polypropylene/ethylene-propylene diene terpolymer binaryblends. J Mater Sci, 2000, 35: 4833–4840.
doi:10.1023/A:1004833014684
8 Ha C S, Cho Y W, Go J H, Cho W J . Dynamic mechanicalproperties of polypropylene-g-maleic anhydride and ethylene-propylene-dieneterpolymer blends: effect of blend preparation methods. J Appl Polym Sci, 2000, 77: 2777–2784.
doi:10.1002/1097‐4628(20000919)77:12<2777::AID‐APP260>3.0.CO;2‐5
9 Xiao H W, Huang S Q, Jiang T . Morphology, rheology, and mechanical properties of dynamicallycured EPDM/PP blend: effect of curing agent dose variation. J Appl Polym Sci, 2004, 92: 357–362.
doi:10.1002/app.20026
10 Yui H, Wu G Z, Sano H, Sumita M, Kino K . Morphology and electrical conductivityof injection-molded polypropylene/carbon black composites with additionof high-density polyethylene. Polymer, 2006, 47: 3599–3608.
doi:10.1016/j.polymer.2006.03.064
11 Fekete E, Michler G H . Aggregation, fracture initiation,and strength of PP/CaCO3 composites. J Macromol Sci Phys, 1999, 38: 885–899.
doi:10.1080/00222349908248146
12 Yang K, Yang Q, Li G X, Sun Y J, Feng D C . Mechanical properties and morphologiesof polypropylene with different sizes of calcium carbonate particles. Polymer composites, 2006, 27: 443–450.
doi:10.1002/pc.20211
13 Ruan W H, Huang X B, Wang X H, Rong M Z, Zhang M Q . Effect of drawing induced dispersionof nano-silica on performance improvement of poly(propylene)-basednanocomposites. Macromol Rapid Commun, 2006, 27: 581–585.
doi:10.1002/marc.200600001
14 Karger-Kocsis J . Polypropylene:structure, blends and composites. London: Chapman & Hall, 1995, Chapter 1
15 Thio Y S, Argon A S, Cohen R E, Weinberg M . Tougheningof isotactic polypropylene with CaCO3 particles. Polymer, 2002, 43: 3661–3674.
doi:10.1016/S0032‐3861(02)00193‐3
16 Thomas S, Groeninckx G . Reactive compatibilisationof heterogeneous ethylene propylene rubber (EPM)/nylon 6 blends bythe addition of compatibiliser precursor EPM-g-MA. Polymer, 1999, 40: 5799–5819.
doi:10.1016/S0032‐3861(98)00813‐1
17 Jose S, Francis B, Thomas S, Karger-Kocsis J . Morphologyand mechanical properties of polyamide 12/polypropylene blends inpresence and absence of reactive compatibiliser. Polymer, 2006, 47: 3874–3888.
doi:10.1016/j.polymer.2006.03.046
18 Wu S . Ageneralized criterion for rubber toughening: The critical matrix ligamentthickness. J Appl Polym Sci, 1988, 35: 549–561.
doi:10.1002/app.1988.070350220
19 Lamb H . Hydrodynamics,6th ed. NewYork: Cambridge University Press, 1932, 598
20 White J L, Liu D, Bumm S H . Development of dispersion in rubber-particle compoundsin internal and continuous mixers. J ApplPolym Sci, 2006, 102: 3940–3943.
doi:10.1002/app.24241
21 Kim H S, Lee B H, Choi S W, Kim S M, Kim H J . The effect of types of maleic anhydride-graftedpolypropylene (MAPP) on the interfacial adhesion properties of bio-flour-filledpolypropylene composites. Composites: ApplS, 2007, 38: 1473–1482.
doi:10.1016/j.compositesa.2007.01.004
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed