Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Eng Chin    2009, Vol. 3 Issue (2) : 125-134    https://doi.org/10.1007/s11705-009-0001-3
RESEARCH ARTICLE
Kinetic roughening transition and missing regime transition of melt crystallized polybutene-1 tetragonal phase: growth kinetics analysis
Motoi YAMASHITA()
Department of Pharmacys, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
 Download: PDF(335 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The morphology and lateral growth rate of isotactic polybutene-1 (it-PB1) have been investigated for crystallization from the melt over a wide range of crystallization temperatures from 50 to 110°C. The morphology of it-PB1 crystals is a rounded shape at crystallization temperatures lower than 85°C, while lamellar single crystals possess faceted morphology at higher crystallization temperatures. The kinetic roughening transition occurs around 85°C. The nucleation and growth mechanism for crystallization does not work below 85°C, since the growth face is rough. However, the growth rate shows the supercooling dependence derived from the nucleation and growth mechanism. The nucleation theory seems still to work even for rough surface growth. Possible mechanisms for the crystal growth of this polymer are discussed.

Keywords isotactic polybutene-1      tetragonal phase (form Ⅱ)      melt crystallization      growth rate      kinetic roughening      morphology     
Corresponding Author(s): YAMASHITA Motoi,Email:motoi-y@fc.ritsumei.ac.jp   
Issue Date: 05 June 2009
 Cite this article:   
Motoi YAMASHITA. Kinetic roughening transition and missing regime transition of melt crystallized polybutene-1 tetragonal phase: growth kinetics analysis[J]. Front Chem Eng Chin, 2009, 3(2): 125-134.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-009-0001-3
https://academic.hep.com.cn/fcse/EN/Y2009/V3/I2/125
Tgc)/ °CUd)/ (J?mol–1)lb/ ?unit cell parametersρe)/ (g·cm–3)Tm0f)/ °C
a0/ ?b0/ ?c0/ ?
Trigonala)17.717.76.50.96136.1
Tetragonalb)14.614.621.20.888124.0
Amorphous–54.262801.540.87
stem parametersΔhff)/ (J?m–3)space groupchain
a/ ?b/ ?lu/ ?conformation/(monomers/turn)
Trigonal5.18.851.35 × 108R??3 ˉc1.083/1
Tetragonal7.37.31.09 × 108P??4 ˉb20.96411/3
Tab.1  Physical properties of -PB1
Fig.1  Schematic illustration of film thickness judgment by gold interference color. When the gold color is observed as the interference color, its complementary color (blue: wave length λ≌ 480 nm) needs to be cancelled by the interference of light. In order for the blue light to be cancelled, the phase of the blue light in the reflection light from one side of the film should be shifted from that from the other side of the film by . This means that the optical path length for the reflection at the film surface is shorter than that for the reflection from inside the film by half the wave length of the blue light, /2. The difference between the optical path length for the reflection at the -PB1 film surface (A) and that for reflection at the -PB1–carbon coat boundary (B) is 2. Here, is the thickness of the -PB1 layer and is the refractive index of -PB1, which is reported to be 1.50 []. When 2 = (1/2)is satisfied, the blue light is cancelled by the interference and gold color is observed as the interference color. Using the parameters listed above, ≌ 80 nm is obtained
Fig.2  Optical micrographs of -PB1 crystallized in melt at 100°C; crossed polars. (a) 140 min and (b) 180 min after the temperature reached 100°C
Fig.3  Time dependence of radius for several crystallization temperatures. (?) 60°C, (?) 82.7°C, (●) 90.7°C (?) 100°C, (×) 110°C
Fig.4  Growth rate versus crystallization temperature . (?) this work and (●) data by Icenogle []
Fig.5  Plot of ln + /( – ) versus 1/Δ. Symbols are the same as in Fig. 4. The parameters used for the plots are as follows: = 124°C [], = –84.2°C, /= 758 []
Fig.6  Electron micrograph (a) and diffraction pattern (b) of an -PB1 single crystal grown at 100°C. (Taken from Ref. 7.) The circle in (a) shows the selected area for the diffraction. Optical micrograph (c) of -PB1 single crystals grown at 100°C (reflection).
Fig.7  Electron micrograph (a), schematic illustration (b), and diffraction pattern (c) of an -PB1 single crystal grown at 88°C. (Taken from Ref. 7).
Fig.8  In-situ optical micrograph (a) and schematic illustration (b) of an -PB1 single crystal growing at 85°C (Taken from Ref. 7). Another single crystal (c) taken at 85°C (in-situ; optical micrograph)
1 Hoffman J D, Miller R L. Kinetics of crystallization from the melt and chain folding in polyethylene fractions revisited: theory and experiment. Polymer , 1997, 38: 3151–3212
doi: 10.1016/S0032-3861(97)00071-2
2 Point J J, Janimak J J. Frank and seto model revisited and a comment about a recent paper by Hoffman and Miller. Polymer , 1998, 39: 7123–7125
doi: 10.1016/S0032-3861(97)10261-0
3 Point J J, Colet M C, Dosiere M. Experimental criterion for the crystallization regime in polymer crystals grown from dilute solution: possible limitation due to fractionation. J Polym Sci Polym Phys Ed , 1986, 24: 357–358
doi: 10.1002/polb.1986.090240212
4 Saito Y. Statistical Physics of Crystal Growth. Singapore: World Scientific Publishing Co. Pte. Ltd., 1996, 56–97
5 Miyamoto Y, Tanzawa Y, Miyaji H, Kiho H. Concentration dependence of lamellar thickness of isotactic polystyrene at high supercoolings. J Phys Soc Jpn , 1989, 58: 1879–1882
doi: 10.1143/JPSJ.58.1879
6 Tanzawa Y. Growth rate and morphology of isotactic polystyrene crystals in solution at high supercoolings. Polymer , 1992, 33: 2659–2665
doi: 10.1016/0032-3861(92)90435-Y
7 Yamashita M, Miyaji H, Izumi K, Hoshino A. Crystal growth of isotactic poly(butane-1) in the Melt. I. kinetic roughening. Polym J , 2004, 36: 226–237
doi: 10.1295/polymj.36.226
8 Yamashita M, Hoshino A, Kato M. Isotactic poly(butene-1) trigonal crystal growth in the Melt. J Polym Sci Polym Phys Ed , 2007, 45: 684–697
doi: 10.1002/polb.21052
9 Yamashita M, Kato M. Lamellar crystal thickness transition of melt crystallized isotactic polybutene-1 observed by small-angle X-ray scattering. J Appl Cryst , 2007, 40: s650–655
doi: 10.1107/S0021889807011570
10 Yamashita M, Kato M. Surface free energies of isotactic polybutene-1 tetragonal and trigonal crystals: the role of conformational entropy of side chains. J Appl Cryst , 2007, 40: s558–563
doi: 10.1107/S0021889807011259
11 Yamashita M, Ueno S. Direct melt crystal growth of isotactic polybutene-1 trigonal phase. Cryst Res Tech , 2007, 42: 1222–1227
doi: 10.1002/crat.200711009
12 Yamashita M, Takahashi T. The effect of side chain entropy on polymer crystal surfaces-surface free energies of isotactic polybutene-1 tetragonal and trigonal crystals. Kobunshi Ronbunshu , 200865: 218–227
doi: 10.1295/koron.65.218
13 Yamashita M. Direct crystal growth of isotactic polybutene-1 trigonal phase in the melt: in-situ observation. J Cryst Gro , 2008, 310: 1739–1743
doi: 10.1016/j.jcrysgro.2007.11.220
14 Yamashita M, Takahashi T. Melt crystallization of isotactic polybutene-1 trigonal form: the effect of side chain entropy on crystal growth kinetics. Poly J , 2008, 40: 996–1004
doi: 10.1295/polymj.PJ2007196
15 Yamashita M, Takahashi T. Kinetic roughening transition of isotactic polybutene-1 tetragonal crystals: disagreement between morphology and growth kinetics. Poly J , 2008, 40: 1025–1030
doi: 10.1295/polymj.PJ2007209
16 Yamashita M, Takahashi T. Directional entropy of chain folding detected in chain folding free energies? Crystal thickness transition of isotactic polybutene-1 tetragonal phase. Poly J , 2008, 1010–1016
doi: 10.1295/polymj.PJ2007198
17 Natta G, Corradini P, Bassi I W. Crystal structure of isotactic poly(1-butene). Nuovo Cimento Suppl , 196015: 52–67
doi: 10.1007/BF02731860
18 Tashiro K, Saiani A, Miyashita S, Chatani Y, Tadokoro H. Crystal structure of unstable Form Ⅱ of isotactic polybutene-1: structure analysis by a combination of X-Ray imaging plate and computer simulation technique. Polym Prepr Jpn , 1998, 47: 3869
19 Miller R L. Polymer Handbook 4th ed. Brandrup J, Immergut E H, GrulkeE A, Ed. New York: Interscience Publishers, 1999, Ⅵ/1–70
20 Hoffman J D, Davis G T, Lauritzen J I Jr. Treatise on Solid State Chemistry. Hannay N B, Ed. New York: Plenum, 1976: 497–580
21 Starkweather H W Jr, Jones G A. The heat of fusion of polybutene-1. J Polym Sci, Pt B, Polym Phys , 1986, 24: 1509–1514
doi: 10.1002/polb.1986.090240709
22 Leute U, Dollhopf W. High pressure dilatometry on polybutene-1. Colloid Polym Sci , 1983, 261: 299–305
doi: 10.1007/BF01413935
23 Turner-Jones A. Cocrystallization in copolymers of α-olefins Ⅱ–butene-1 copolymers and polybutene type Ⅱ/I crystal phase transition. Polymer , 1976, 7: 23–59
doi: 10.1016/S0032-3861(66)80015-0
24 Turner-Jones A. Poly-l-butylene Type Ⅱ crystalline form. J Polym Sci Pt B: Polym Lett , 1963, 1: 455–456
doi: 10.1002/pol.1963.110010815
25 Sadler D M. Roughness of growth faces of polymer crystals: evidence from morphology and implications for growth mechanisms and types of folding. Polymer 1983, 24: 1401–1409
doi: 10.1016/0032-3861(83)90220-3
26 Toda A. Kinetic barrier of pinning in polymer crystallization: rate equation approach. J Chem Phys , 2003, 118: 8446–8455
doi: 10.1063/1.1565998
27 Jitka H; Jaroslav S, Pavel K. Refractive index increments of polyolefins. J Appl Polym Sci , 1983, 28: 3873–3874
doi: 10.1002/app.1983.070281225
28 Icenoge R D. Temperature-dependent melt crystallization kinetics of poly(butene-1): a new approach to the characterization of the crystallization kinetics of semicrystalline polymers. J Polym Sci Polym Phys Ed , 1985, 23: 1369–1391
doi: 10.1002/pol.1985.180230706
29 Zhai X, Wang W, Ma Z, Wen X, Yuan F, Tang X, He B. Spontaneous and inductive thickenings of lamellar crystal monolayers of low molecular weight PEO fractions on surface of solid substrates. Macromolecules 2005, 38: 1717–1722
doi: 10.1021/ma047764+
30 Tang X, Wen X, Zhai X, Xia N, Wang W, Wegner G, Wu Z. Thickening process and kinetics of lamellar crystals of a low molecular weight poly(ethylene oxide). Macromolecules 2007, 40: 4386–4388
doi: 10.1021/ma070414d
31 Zhai X, Wang W, Zhang G, He B. Crystal pattern formation and transitions of PEO monolayers on solid substrates from nonequilibrium to near equilibrium. Macromolecules , 2006, 39: 324–329
doi: 10.1021/ma051624y
32 Ma Z, Zhang G, Zhai X, Jin L, Tang X, Yang M, Zheng P, Wang W. Fractal crystal growth of poly(ethylene oxide) crystals from its amorphous monolayers. Polymer , 2008, 49: 1629–1634
doi: 10.1016/j.polymer.2008.01.067
33 Fu Q, Heck B, Strobl G, Thomann Y. A Temperature- and molar mass-dependent change in the crystallization mechanism of poly(1-butene): transition from chain-folded to chain-extended crystallization? Macromolecules , 2001, 34: 2502–2511
doi: 10.1021/ma0015875
34 Choy C L, Ong E L, Chen F C. Thermal diffusivity and conductivity of crystalline polymers. J Appl Polym Sci , 2003, 26: 2325–2335
doi: 10.1002/app.1981.070260719
35 Chang S S. Specific heat of hydrocarbon polymers. Polym Prep , 1987, 28: 244–245
36 Taguchi K, Miyaji H, Izumi K, Hoshino A, Miyamoto Y, Kokawa R. Growth shape of isotactic polystyrene crystals in thin films. Polymer , 2001, 42: 7443–7447
doi: 10.1016/S0032-3861(01)00215-4
37 Armisted J P, Hoffman J D. Direct evidence of regimes I, Ⅱ, and Ⅲ in linear polyethylene fractions as revealed by spherulite growth rates. Macromolecules , 2002, 35: 3895–3913
doi: 10.1021/ma010313u
38 Hoffman J D. Regime Ⅲ crystallization in melt-crystallized polymers: the variable cluster model of chain folding. Polymer , 1983, 24: 3–26
doi: 10.1016/0032-3861(83)90074-5
39 Lorenzo M L D. Determination of spherulite growth rates of poly(L-lactic acid) using combined isothermal and non-isothermal procedures. Polymer , 2001, 42: 9441–9446
doi: 10.1016/S0032-3861(01)00499-2
40 Sadler D M, Gilmer G H. A model for chain folding in polymer crystals: rough growth faces are consistent with the observed growth rates. Polymer , 1984, 25: 1446–1452
doi: 10.1016/0032-3861(84)90108-3
41 Chernov A A. Growth mechanisms in modern crystallography Ⅲ. New York: Springer, 1984, 104–158
42 Miller R L. Polymer Handbook 4th ed. Brandrup J, Immergut E H, Grulke E A, Ed. New York: Interscience Publishers, 1999, Ⅷ/48–49
43 Miyaji H, Miyamoto Y, Taguchi K, Hoshino A, Yamashita M, Sawanobori O, Toda A. Morphology, growth rate, and lamellar thickness of polymer crystals. J Macromol Sci , 2003, B42: 867–874
doi: 10.1081/MB-120021611
[1] Bastian Reiprich, Tobias Weissenberger, Wilhelm Schwieger, Alexandra Inayat. Layer-like FAU-type zeolites: A comparative view on different preparation routes[J]. Front. Chem. Sci. Eng., 2020, 14(2): 127-142.
[2] Tianjie Liu, Hao Fan, Yanxia Xu, Xingfu Song, Jianguo Yu. Effects of metal ions on the morphology of calcium sulfate hemihydrate whiskers by hydrothermal method[J]. Front. Chem. Sci. Eng., 2017, 11(4): 545-553.
[3] Ahmed ABOUZEID,Sandra PETERSEN,Joachim ULRICH. Utilizing melt crystallization fundamentals in the development of a new tabletting technology[J]. Front. Chem. Sci. Eng., 2014, 8(3): 346-352.
[4] C. SCHMIDT, J. ULRICH. Molecular level simulations on multi-component systems —a morphology prediction method[J]. Front Chem Sci Eng, 2013, 7(1): 49-54.
[5] Xiaobin JIANG, Baohong HOU, Yongli WANG, Jingkang WANG. Permeability analysis and seepage process study on crystal layer in melt crystallization with fractal and porous media theory[J]. Front Chem Sci Eng, 2011, 5(4): 435-441.
[6] Jinquan SUN, Zifeng YAN, Hongzhi CUI. Salt-assisted synthesis of tree-like oriented SnO2 nanodendrite[J]. Front Chem Sci Eng, 2011, 5(2): 227-230.
[7] Yakai FENG, Fanru MENG, Ruofang XIAO, Haiyang ZHAO, Jintang GUO. Electrospinning of polycarbonate urethane biomaterials[J]. Front Chem Sci Eng, 2011, 5(1): 11-18.
[8] Ying ZHANG, Shili ZHENG, Yifei ZHANG, Hongbin XU, Yi ZHANG. Additives effects on crystallization and morphology in a novel caustic aluminate solution decomposition process[J]. Front Chem Eng Chin, 2009, 3(1): 88-92.
[9] WANG Shoulian, HE Jie, ZENG Yu, YAN Bin, WANG Yinghan. Effect of polymer structures on electro-optical properties of polymer stabilized liquid crystal films[J]. Front. Chem. Sci. Eng., 2008, 2(3): 265-268.
[10] LU Yangcheng, WU Yingxin. Influence of coagulation bath on morphology of cellulose membranes prepared by NMMO method[J]. Front. Chem. Sci. Eng., 2008, 2(2): 204-208.
[11] RUN Mingtao, SONG Hongzan, WANG Yingjin, YAO Chenguang, GAO Jungang. Studies on the rheological, phase morphologic, thermal and mechanical properties of poly(trimethylene terephthalate)/ethylene propylene diene monomer copolymer grafted with maleic anhydride/metallocene polyethylene blends[J]. Front. Chem. Sci. Eng., 2007, 1(3): 238-245.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed