Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Eng Chin    2009, Vol. 3 Issue (2) : 155-160    https://doi.org/10.1007/s11705-009-0005-z
RESEARCH ARTICLE
Sulfate digestion process for high purity TiO2 from titania slag
T. A. LASHEEN()
Researches Sector, Nuclear Materials Authority, P. O. Box 530 El Maadi, Cairo, Egypt
 Download: PDF(147 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A titania slag product of Rosetta ilmenite assaying 72% TiO2 is treated by the sulfate process option of the pigmentary TiO2 manufacture. The relevant factors of acid concentration, particle size, slag/acid ratio besides the reaction temperature, and time have been studied. After dissolving the cured mass in dilute acid and clarification, the obtained solution was subjected to hydrolysis of its titanium content. The final product was bleached under reducing conditions to redissolve the residual coloring impurities before being dewatered and calcinated. The obtained results indicated that a leaching efficiency of about 92% was realized due to the presence of some refractory components in the working slag material, namely, rutile and magnesium iron titanate. The obtained white pigment assay attained up to 99.85% TiO2, while the analyzed impurities involve 77 ppm Mn and only 14 and 7 ppm of total iron and V, respectively.

Keywords titania      slag      sulfate process      pigment     
Corresponding Author(s): LASHEEN T. A.,Email:lasheen_ta@yahoo.com   
Issue Date: 05 June 2009
 Cite this article:   
T. A. LASHEEN. Sulfate digestion process for high purity TiO2 from titania slag[J]. Front Chem Eng Chin, 2009, 3(2): 155-160.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-009-0005-z
https://academic.hep.com.cn/fcse/EN/Y2009/V3/I2/155
Fig.1  X-ray diffraction pattern of sample slag
M-magnesium iron titanate, P- pseudobrookite, R-rutile, I-metallic iron, Q-quartz
constituent wt-%constituentwt-%
TiO272.00MnO1.63
Fe2O3a)12.65Cr2O30.32
Al2O31.80V2O50.55
MgO0.60P2O50.06
CaO0.78SiO29.00
Tab.1  Chemical analysis of the working titania slag
Fig.2  Effect of acid concentration on the dissolution efficiency of the working slag
Fig.3  Effect of particle mesh size on the dissolution efficiency of the working slag
Fig.4  Effect of slag/acid ratio on the dissolution efficiency of the working slag
Fig.5  Effect of temperature on the dissolution efficiency of the working slag
temperature/°C155160170180190200
solidification time/ min57.050.033.010.03.53.00
titanium dissolution efficiency/%87.591.985.372.566.463.5
Tab.2  Effect of temperature on the solidification time of the reacting slag/acid slurry
Fig.6  X-ray diffraction pattern of unreacted slag sample
M-magnesium iron titanate, R-rutile, Q-quartz
Fig.7  X-ray diffraction pattern of ignited product at 600°C (Anatase) and at 900°C (Rutile)
A-Anatase, R-Rutile
TiO2Fe2O3 a)CaOMgOP2O5Al2O3MnOCr2O3V2O5SiO2
beforebl99.700.010--0.02-0.0780.1280.0300-
afterbl99.850.002--0.00-0.010-0.0012-
Tab.3  Chemical composition of the ignited TiO product before and after bleaching (wt-%)
1 Harben P W. The Industrial Minerals HandyBook, 3rd Edition, London, UK. 1999, 216-223
2 Becher R G, Canning R G, Goodheart B A, Uusna S. A new process for upgrading ilmenite minerals sands. Proc. Australas. Inst. Min. Metall . 1965, 21: 1261-1283
3 Chen James H, Tex C C. US Patent, 3825419, 1974
4 Schoukens A F S, Morris D J, Stephen MC. US Patent, 6733561 B2, 2004
5 Sahu K K, Alex T C, Mishra D, Agrawal A. An overview on the production of pigment grade titania from titania-rich slag. Waste Manage Res , 2006, 24: 74-79
doi: 10.1177/0734242X06061016
6 Mackey T S. Upgrading ilmenite into a high-grade synthetic rutile. Journal of Metals , 1994, April: 59-64
7 Gueguin M. US Patent, 4078039, 1978
8 Gueguin M. US Patent, 4933153, 1990
9 Gueguin M. US Patent, 5063032, 1991
10 Gueguin M. US Patent, 5389355, 1995
11 Elger G W, Kirby D E. US Patent, 3996332, 1976
12 Jarish B. US Patent, 4038363, 1977
13 Van Dyk J P, Vegter N M, Visser C P, De lange T, Winter J D, Walpole E A, Nell J. US Patent, 6803024 B1, 2004
14 Borowiec K, Grau A E, Gueguin M, Turgeon J F. US Patent, 5830420, 1998
15 Elger G W, Holmes R A. US Patent, 4362557, 1982
16 Borowiec K. Sulphidization of solid titania slag. Scandinavian journal of metallurgy , 1991, 20: 198-204
17 Liang B, Li C, Zhang C, Zhang Y. Leaching kinetics of Panzhihua ilmenite in sulfuric acid. Hydrometallurgy , 2005, 76: 173-179
doi: 10.1016/j.hydromet.2004.10.006
18 Han K N, Rubcumintara T, Fuerstenau M C. Leaching behavior of ilmenite with sulfuric acid. Metall Trans, B, Process Metall , 1986, 18B: 325-330
19 Sinha H N. Solubility of titanium minerals. In: Preprints-International Conference on “Advances in Chemical Metallurgy” Bhabha Atomic Research Center. Bombay, India , 1979, 2: paper 35
20 Johnsson M, Pettersson P, Nygren M. Thermal decomposition of fibrous TiOSO4·2H2O to TiO2. Thermochimica Acta . 1997, 298: 47-54
doi: 10.1016/S0040-6031(97)00206-2
[1] Kadriye Özlem Hamaloğlu, Ebru Sağ, Çiğdem Kip, Erhan Şenlik, Berna Saraçoğlu Kaya, Ali Tuncel. Magnetic-porous microspheres with synergistic catalytic activity of small-sized gold nanoparticles and titania matrix[J]. Front. Chem. Sci. Eng., 2019, 13(3): 574-585.
[2] Zhao Peng, Li-Hua Chen, Ming-Hui Sun, Pan Wu, Chang Cai, Zhao Deng, Yu Li, Wei-Hong Zheng, Bao-Lian Su. Template-free synthesis of hierarchically macro-mesoporous Mn-TiO2 catalysts for selective reduction of NO with NH3[J]. Front. Chem. Sci. Eng., 2018, 12(1): 43-49.
[3] Xuan Wang, Daneel Geysen, Tom Van Gerven, Peter T. Jones, Bart Blanpain, Muxing Guo. Characterization of landfilled stainless steel slags in view of metal recovery[J]. Front. Chem. Sci. Eng., 2017, 11(3): 353-362.
[4] Remus I. Iacobescu, Valérie Cappuyns, Tinne Geens, Lubica Kriskova, Silviana Onisei, Peter T. Jones, Yiannis Pontikes. The influence of curing conditions on the mechanical properties and leaching of inorganic polymers made of fayalitic slag[J]. Front. Chem. Sci. Eng., 2017, 11(3): 317-327.
[5] Mohammad Banimahd KIEVANI, Milad EDRAKI. Synthesis, characterization and assessment thermal properties of clay based nanopigments[J]. Front. Chem. Sci. Eng., 2015, 9(1): 40-45.
[6] YANG Zehui, OU Encai, WANG Yunan, PENG Li, WANG Jiaqiang, YIN Lihui. Transition metal doped mesoporous titania with a crystalline framework as catalysts for oxidation of -bromotoluene to -bromobenzaldehyde[J]. Front. Chem. Sci. Eng., 2008, 2(3): 296-300.
[7] ZHANG Gaojie, WU Jinming, LIU Shaoguang, YAN Mi. Fabrication of titania thin film with composite nanostructure and its ability to photodegrade rhodamine B in water[J]. Front. Chem. Sci. Eng., 2008, 2(1): 44-48.
[8] XIAO Xinyan, ZHANG Huiping, CHEN Huanqin, LIAO Dongliang. Synthesis of TiO2 nano-particles and their photocatalytic activity for formaldehyde and methyl orange degradation[J]. Front. Chem. Sci. Eng., 2007, 1(2): 178-183.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed