Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Eng Chin    2009, Vol. 3 Issue (2) : 146-154    https://doi.org/10.1007/s11705-009-0007-x
RESEARCH ARTICLE
Removal of malachite green from aqueous solution by sorption on hydrilla verticillata biomass using response surface methodology
R. RAJESHKANNAN(), N. RAJAMOHAN, M. RAJASIMMAN
Environmental Engineering Laboratory, Department of Chemical Engineering, Annamalai University, Annamalai Nagar-608002, Tamil Nadu, India
 Download: PDF(351 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In the present study, the effect of adsorbent dose, pH, temperature, initial dye concentration and contact time on malachite green removal from an aqueous medium using hydrilla verticillata biomass has been investigated. The central composite face-centered experimental design (CFCD) in response surface methodology (RSM) was used for designing the experiments as well as for full response surface estimation. The optimum conditions for maximum removal of malachite green from an aqueous solution of 75.52 mg/L were as follows: adsorbent dose (11.14 g/L), pH (8.4), temperature (48.4°C) and contact time (194.5 min). This was evidenced by the higher value of coefficient of determination (R2=0.9158).

Keywords response surface methodology      hydrilla verticillata      malachite green      adsorption      central composite design     
Corresponding Author(s): RAJESHKANNAN R.,Email:kannan_vrr007@yahoo.com   
Issue Date: 05 June 2009
 Cite this article:   
R. RAJESHKANNAN,N. RAJAMOHAN,M. RAJASIMMAN. Removal of malachite green from aqueous solution by sorption on hydrilla verticillata biomass using response surface methodology[J]. Front Chem Eng Chin, 2009, 3(2): 146-154.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-009-0007-x
https://academic.hep.com.cn/fcse/EN/Y2009/V3/I2/146
1 Mohamed M. Acid dye removal: comparison of surfactant- modified mesoporous FSM-16 with activated carbon derived from rice husk. Journal of Colloid and Interface Science , 2004, 272: 28-34
doi: 10.1016/j.jcis.2003.08.071
2 Ho S and Mckay G A. Comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Trans IChemE , 1998, 7: 123-129
3 Safarik I, Tackova L and Safarikova M. Adsorption of dyes on magnetically labeled baker’s yeast cells, European Cells and Materials , 2002, 3: 52-55
4 Chiou M S, Ho PY, Li H Y. Adsorption Behavior of Dye AAVN and RB4 in Acid Solutions on Chemically Cross-Linked Chitosan Beads. J Chin Inst Chem Engrs , 2003, 34: 625-634
5 Bunluesin S, Bruattrachue M, Prayadpokethitiyook. Batch and continuous packed column studies of cadmium biosorption by hydrilla verticillata biomass. Journal of bioscience and bioengineering , 2007, 103: 509-513
doi: 10.1263/jbb.103.509
6 Low K S, Lee C K, Heng L L. Sorption of basic dyes by Hydrilla verticillata, Environmental Technology , 1994, 15: 115-124
doi: 10.1080/09593339409385411
7 Khattri S D, Singh M K. Colour removal from dye wastewater using sugar cane dust as an adsorbent, Adsorpt Sci Technol , 1999, 17: 269-282
8 Culp S J, Beland F A. Malachite green: a toxicological review, J Am College Toxicol , 1996, 15: 219-238
9 Culp S J, Blankenship L R, Kusewitt D F, Doerge D R. Toxicity and metabolism of malachite green and leucomalachite green during short-term feeding to Fischer 344 rats and B6C3F[1]mice, Chem Biol Interact , 1999, 122: 153-170
doi: 10.1016/S0009-2797(99)00119-2
10 Alderman D J. Malachite green-a review, J Fish Dis , 1985, 8: 289-298
doi: 10.1111/j.1365-2761.1985.tb00945.x
11 Sawa Y, Hoten M, Antibacterial activity of basic dyes on the dyed acrylic fibers, Sen I Gakkaishi , 2001, 57: 153-158
doi: 10.2115/fiber.57.153
12 Clifton-Hadley R S, Alderman D J. The effects of malachite green upon proliferative kidney-disease, J. Fish Dis , 1987, 10: 101-107
doi: 10.1111/j.1365-2761.1987.tb00725.x
13 McKay G, Otterburn M S, Aga D A. Fullers earth and fired clay as adsorbent for dye stuffs, equilibrium and rate constants, Water Air Soil Pollut , 1985, 24: 307-322
doi: 10.1007/BF00161790
14 Gregory A R, Elliot S, Kluge P. Ames testing of direct black 3B parallel carcinogenecity, J Appl Toxicol , 1991, 1: 308-313
doi: 10.1002/jat.2550010608
15 Srivastava S J, Singh N D, Srivastava A K, Sinha R. A cute toxicity of malachite green and its effects on certain blood parameters of a catfish, Heteropneustes Fossilis, Aquat Toxicol , 1995, 31: 241-247
doi: 10.1016/0166-445X(94)00061-T
16 Singh S, Das M, Khanna S K. Biodegradation of malachite green and rhodamine-B by cecal microflora of rats, Biochem Biophys Res Commun , 1994, 200 : 1544-1550
doi: 10.1006/bbrc.1994.1626
17 Srivastava S, Sinha R, Roy D. Toxicological effects of malachite green, Aquat Toxicol , 2004, 66: 319-329
doi: 10.1016/j.aquatox.2003.09.008
18 Elibol M, Ozer D. Response surface methodological approach for inclusion of perfluorocarbon in actinorhodin fermentation medium. Process Biochem , 2002, 38: 667-773
doi: 10.1016/S0032-9592(02)00171-1
19 Umesh K, Garg Kaur M P, Garg Dhiraj Sud M V. Removal of nickel[II] from aqueous solution by adsorption on agricultural waste biomass using a response methodological approach. Bioresource Technology , 2008, 99: 1325-1331
doi: 10.1016/j.biortech.2007.02.011
20 Annadurai G, Juang R S, Lee D J. Adsorption of heavy metals from water using banana and orange peels. Water Sci Technol 2003, 47: 185-190
21 Gopal M, Pakshirajan K, Swaminathan T. Heavy metal removal by biosorption using Phanerochaete hrysosporium. Appl Biochem Biotechnol , 2002, 102: 227-237
doi: 10.1385/ABAB:102-103:1-6:227
[1] Xuewen Hu, Yun Wang, Jinbo Ou Yang, Yang Li, Peng Wu, Hengju Zhang, Dingzhong Yuan, Yan Liu, Zhenyu Wu, Zhirong Liu. Synthesis of graphene oxide nanoribbons/chitosan composite membranes for the removal of uranium from aqueous solutions[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1029-1038.
[2] Jiehui Zeng, Jianxian Zeng, Hu Zhou, Guoqing Liu, Zhengqiu Yuan, Jian Jian. Ion-imprinted silica gel and its dynamic membrane for nickel ion removal from wastewaters[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1018-1028.
[3] Jun Wei, Jianbo Zhao, Di Cai, Wenqiang Ren, Hui Cao, Tianwei Tan. Synthesis of micro/meso porous carbon for ultrahigh hydrogen adsorption using cross-linked polyaspartic acid[J]. Front. Chem. Sci. Eng., 2020, 14(5): 857-867.
[4] Alireza Hadi, Javad Karimi-Sabet, Abolfazl Dastbaz. Parametric study on the mixed solvent synthesis of ZIF-8 nano- and micro-particles for CO adsorption: A response surface study[J]. Front. Chem. Sci. Eng., 2020, 14(4): 579-594.
[5] Hanlu Wang, Idris Jibrin, Xingye Zeng. Catalytic oxidative desulfurization of gasoline using phosphotungstic acid supported on MWW zeolite[J]. Front. Chem. Sci. Eng., 2020, 14(4): 546-560.
[6] Majid Peyravi. Preparation of adsorptive nanoporous membrane using powder activated carbon: Isotherm and thermodynamic studies[J]. Front. Chem. Sci. Eng., 2020, 14(4): 673-687.
[7] Kasra Pirzadeh, Ali Asghar Ghoreyshi, Mostafa Rahimnejad, Maedeh Mohammadi. Optimization of electrochemically synthesized Cu3(BTC)2 by Taguchi method for CO2/N2 separation and data validation through artificial neural network modeling[J]. Front. Chem. Sci. Eng., 2020, 14(2): 233-247.
[8] Huixin Zhang, Jinying Liang, Bangwang Xia, Yang Li, Shangfeng Du. Ionic liquid modified Pt/C electrocatalysts for cathode application in proton exchange membrane fuel cells[J]. Front. Chem. Sci. Eng., 2019, 13(4): 695-701.
[9] Sidra Rama, Yan Zhang, Fideline Tchuenbou-Magaia, Yulong Ding, Yongliang Li. Encapsulation of 2-amino-2-methyl-1-propanol with tetraethyl orthosilicate for CO2 capture[J]. Front. Chem. Sci. Eng., 2019, 13(4): 672-683.
[10] Rusen Zhou, Renwu Zhou, Xianhui Zhang, Kateryna Bazaka, Kostya (Ken) Ostrikov. Continuous flow removal of acid fuchsine by dielectric barrier discharge plasma water bed enhanced by activated carbon adsorption[J]. Front. Chem. Sci. Eng., 2019, 13(2): 340-349.
[11] Ming Zhao, Run Liu, Jian Luo, Yan Sun, Qinghong Shi. Fabrication of high-capacity cation-exchangers for protein adsorption: Comparison of grafting-from and grafting-to approaches[J]. Front. Chem. Sci. Eng., 2019, 13(1): 120-132.
[12] Shenggang Chen, Tao Liu, Ruiqi Yang, Dongqiang Lin, Shanjing Yao. Preparation of copolymer-grafted mixed-mode resins for immunoglobulin G adsorption[J]. Front. Chem. Sci. Eng., 2019, 13(1): 70-79.
[13] Xiangfeng Peng, Zhenhai Wang, Zhao Wang, Yunxiang Pan. Multivalent manganese oxides with high electrocatalytic activity for oxygen reduction reaction[J]. Front. Chem. Sci. Eng., 2018, 12(4): 790-797.
[14] Nachuan Wang, Jun Wang, Peng Zhang, Wenbin Wang, Chuangchao Sun, Ling Xiao, Chen Chen, Bin Zhao, Qingran Kong, Baoku Zhu. Metal cation removal by P(VC-r-AA) copolymer ultrafiltration membranes[J]. Front. Chem. Sci. Eng., 2018, 12(2): 262-272.
[15] Veselina Georgieva, Richard Retoux, Valerie Ruaux, Valentin Valtchev, Svetlana Mintova. Detection of CO2 and O2 by iron loaded LTL zeolite films[J]. Front. Chem. Sci. Eng., 2018, 12(1): 94-102.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed