Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Eng Chin    2009, Vol. 3 Issue (2) : 206-210    https://doi.org/10.1007/s11705-009-0053-4
RESEARCH ARTICLE
Photocatalytic degradation of omethoate using NaY zeolite-supported TiO2
Dishun ZHAO1,3(), Jialei WANG1, Zhigang ZHANG2, Juan ZHANG3
1. School of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; 2. Shijiazhuang Chaoyang Safety Evaluation Advisory Ltd., Shijiazhuang 050051, China; 3. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
 Download: PDF(145 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The degradation of omethoate was conducted using H2O2 as oxidant, TiO2 supported on NaY zeolite as photocatalyst and a 300 W lamp as light source. The effect of the calcination temperature of the photocatalyst, the amount of TiO2 loaded on NaY zeolite, the photocatalyst amount, the pH value and the radiation time on the degradation ratio of omethoate were investigated. The results show that TiO2/NaY zeolite photocatalyst prepared by sol-gel method had good photocatalysis. The photocatalytic optimum oxidation conditions of omethoate are as follows: the calcination temperature of the photocatalyst is 550°C,the amount of TiO2 loaded on NaY zeolite is 35.2 wt-%, the amount of photocatalyst is 5 g/L, pH=8 and the radiation time is 180 min. Under these conditions, the removal ratio of omethoate is up to 93%.

Keywords TiO2      NaY zeolite      photocatalytic degradation      omethoate     
Corresponding Author(s): ZHAO Dishun,Email:dishunzhao@yahoo.com.cn   
Issue Date: 05 June 2009
 Cite this article:   
Dishun ZHAO,Jialei WANG,Zhigang ZHANG, et al. Photocatalytic degradation of omethoate using NaY zeolite-supported TiO2[J]. Front Chem Eng Chin, 2009, 3(2): 206-210.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-009-0053-4
https://academic.hep.com.cn/fcse/EN/Y2009/V3/I2/206
Fig.1  Schematic diagram of experimental apparatus
1 condenser tube; 2 inlet of water; 3 inlet of air; 4 silicon cold trap; 5 glass reactor; 6 magnetic stirrer; 7 bracket of reactor; 8 Hg lamp; 9 outlet of air; 10 outlet of water
Fig.2  XRD patterns of NaY zeolite and calcination of photocatalyst; a NaY; b TiO/NaY zeolite (Condition: calcination temperature 550°C, 35.2 wt-% TiO)
Fig.3  IR patterns of NaY zeolite and TiO/NaY photocatalyst TiO loading content (wt-%): a 48.42; b 45.65; c 42.56; d 39.10; e 35.20; f 30.76; g 25.72
Fig.4  Effect of different content of TiO on photodegradation rate of omethoate
Fig.5  Effect of calcination temperature on photodegradation rate of omethoate
Fig.6  Effect of pH value on photodegradation rate
Fig.7  Effect of amount of TiO/NaY
1 Clive T. What they are; how they are used; how they are transported. Persistent Organic Pollutants, 2002, 26: 1-5
2 Guan W T. Correct evaluation of organophosphorus insecticides. Insecticide , 1992, 31(6): 20-23
3 Amarolli D, Arakawa N S, Carvalho D. Safety measures in the application of organophosphate insecticides on staked tomato crops using dragged hoses. Bull Environ Contam and Toxicol , 2002, 68(4): 0490-0494
4 Leonard P G. Uses, benefits of organophosphate and carbamate insecticides in US crop production. NCFAP Reports , 1997, December, 1-15
5 Gao J L, Zhan F, Hou J. Study on biodegradation of omethoate and its immediate in wastewater. Henan Kexue , 1999, 17(2): 68-73 (in Chinese)
6 Purdey M. High-dose exposure to systemic phosmet insecticide modifies the phosphatidylinositol anchor on the prion protein: the origins of new variant trans44missible spongiform encephalopathies. Med Hypotheses , 1998, 50: 91-114
doi: 10.1016/S0306-9877(98)90194-3
7 Millini R, Massara P E, Perego G,. Framework composition of titanium silicalite-1. J Catal , 1992, 137(2): 497-503
doi: 10.1016/0021-9517(92)90176-I
8 MohamedR M, Ismail A A, Othman I, Ibrahim I A. Preparation of TiO2-ZSM-5 zeolite for photodegradation of EDTA. Journal of Molecular Catalysis A: Chemical , 2005, 238(1): 151-157
doi: 10.1016/j.molcata.2005.05.023
9 Ismail A A, Ibrahim I A, Ahmed M S, Mohamed R M, El-Shall H. Sol–gel synthesis of titania–silica photocatalyst for cyanide photodegradation. J. of Photochemistry and Photobiology :A Chemistry , 2004, 163: 445-451
doi: 10.1016/j.jphotochem.2004.01.017
10 Durgakumari V, Subrahmanyam M, Subba K V, Ratnamala A, Noorjahan M, Tanaka K. An easy and efficient use of TiO2supported HZSM-5 and TiO2+HZSM-5 zeolite combinate in the photodegradation of aqueous phenol and p-chlorophenol. Appl Catal A , 2002, 234: 155
doi: 10.1016/S0926-860X(02)00224-7
11 Tang Q W, Lin J M, Wu Z B. Preparation and photocatalytic degradability of TiO2/polyacrylamide composite. European Polymer Journal , 2007, 43(6): 2214-2220
doi: 10.1016/j.eurpolymj.2007.01.054
12 Notari B. Synthesis and catalytic properties of titanium-containing zeolites. Stud Surf Sci Catal , 1988, 37: 413
doi: 10.1016/S0167-2991(09)60618-2
13 Boccuti M R, Rao K M, Zecchina A, Leofanti G, Petrini G. Spectroscopic characterization of silicalite and titanium-silicalite. Stud Surf Sci Catal , 1989, 48: 133-144
doi: 10.1016/S0167-2991(08)60677-1
14 Wang C C, Lee C K, Lyu M D, Juang L C. Photocatalytic degradation of C.I. Basic Violet 10 using TiO2catalysts supported by Y zeolite: an investigation of the effects of operational parameters. Dyes and Pigments , 2008, 76: 817-824
doi: 10.1016/j.dyepig.2007.02.004
15 Grzechulska J, Morawski A W. Photocatalytic decomposition of azo-dye acid black 1 in water over modified titanium dioxide. Applied Catalysis B: Environmental , 2002, 36: 45-51
doi: 10.1016/S0926-3373(01)00275-2
16 Rabindranathan S, Suja D P, Yesodharan S. Photocatalytic degradation of phosphamidon on semiconductor oxides. J Hazard Mater B , 2003, 102: 217-229
doi: 10.1016/S0304-3894(03)00167-5
[1] Njud S. Alharbi, Baowei Hu, Tasawar Hayat, Samar Omar Rabah, Ahmed Alsaedi, Li Zhuang, Xiangke Wang. Efficient elimination of environmental pollutants through sorption-reduction and photocatalytic degradation using nanomaterials[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1124-1135.
[2] Jianwei Lu, Lan Lan, Xiaoteng Terence Liu, Na Wang, Xiaolei Fan. Plasmonic Au nanoparticles supported on both sides of TiO2 hollow spheres for maximising photocatalytic activity under visible light[J]. Front. Chem. Sci. Eng., 2019, 13(4): 665-671.
[3] Navid Azizi, Mojgan Isanejad, Toraj Mohammadi, Reza M. Behbahani. Effect of TiO2 loading on the morphology and CO2/CH4 separation performance of PEBAX-based membranes[J]. Front. Chem. Sci. Eng., 2019, 13(3): 517-530.
[4] Dongjie Yang, Shengyu Wang, Ruisheng Zhong, Weifeng Liu, Xueqing Qiu. Preparation of lignin/TiO2 nanocomposites and their application in aqueous polyurethane coatings[J]. Front. Chem. Sci. Eng., 2019, 13(1): 59-69.
[5] Yu Yang, Hassan Javed, Danning Zhang, Deyi Li, Roopa Kamath, Kevin McVey, Kanwartej Sra, Pedro J.J. Alvarez. Merits and limitations of TiO2-based photocatalytic pretreatment of soils impacted by crude oil for expediting bioremediation[J]. Front. Chem. Sci. Eng., 2017, 11(3): 387-394.
[6] Kanchapogu Suresh, G. Pugazhenthi, R. Uppaluri. Preparation and characterization of hydrothermally engineered TiO2-fly ash composite membrane[J]. Front. Chem. Sci. Eng., 2017, 11(2): 266-279.
[7] Nadir Abbas, Godlisten N. Shao, Syed M. Imran, Muhammad S. Haider, Hee Taik Kim. Inexpensive synthesis of a high-performance Fe3O4-SiO2-TiO2 photocatalyst: Magnetic recovery and reuse[J]. Front. Chem. Sci. Eng., 2016, 10(3): 405-416.
[8] A. M. Bakhshayesh,S. S. Azadfar. Orderly decorated nanostructural photoelectrodes with uniform spherical TiO2 particles for dye-sensitized solar cells[J]. Front. Chem. Sci. Eng., 2015, 9(4): 532-540.
[9] Xiaojie Zhang,Lei Wang,Shuqing Chen,Yi Huang,Zhuonan Song,Miao Yu. Facile synthesis and enhanced visible-light photocatalytic activity of Ti3+-doped TiO2 sheets with tunable phase composition? ?[J]. Front. Chem. Sci. Eng., 2015, 9(3): 349-358.
[10] Mingyu LIN,Yao Hsiang TSENG,Chin-Pao HUANG. Interactions between nano-TiO2 particles and algal cells at moderate particle concentration[J]. Front. Chem. Sci. Eng., 2015, 9(2): 242-257.
[11] Zhong HE,Xianqin WANG. Highly selective catalytic hydrodeoxygenation of guaiacol to cyclohexane over Pt/TiO2 and NiMo/Al2O3 catalysts[J]. Front. Chem. Sci. Eng., 2014, 8(3): 369-377.
[12] Paramasivan GOMATHISANKAR,Tomoko NODA,Hideyuki KATSUMATA,Tohru SUZUKI,Satoshi KANECO. Enhanced hydrogen production from aqueous methanol solution using TiO2/Cu as photocatalysts[J]. Front. Chem. Sci. Eng., 2014, 8(2): 197-202.
[13] Weixin ZHANG, Jie XING, Zeheng YANG, Mei KONG, Hongxu YAO. A chemical etching route to controllable fabrication of TiO2 hollow nanospheres for enhancing their photocatalytic activity[J]. Front Chem Sci Eng, 2013, 7(2): 192-201.
[14] Xuesong SHANG, Jianrong LI, Xiaowei YU, Jinsheng CHEN, Chi HE. Effective regeneration of thermally deactivated commercial V-W-Ti catalysts[J]. Front Chem Sci Eng, 2012, 6(1): 38-46.
[15] John TELLAM, Xu ZONG, Lianzhou WANG. Low temperature synthesis of visible light responsive rutile TiO2 nanorods from TiC precursor[J]. Front Chem Sci Eng, 2012, 6(1): 53-57.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed