Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Eng Chin    0, Vol. Issue () : 224-228    https://doi.org/10.1007/s11705-009-0067-y
REVIEW ARTICLE
Methodologies for chemical utilization of CO2 to valuable compounds through molecular activation by efficient catalysts
Liangnian HE(), Ya Du, Chengxia MIAO, Jinquan WANG, Xiaoyong DOU, Ying WU
State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
 Download: PDF(173 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The reactions of CO2 with oxirane to produce cyclic carbonate, and with aziridine to afford oxazolidine have been of interest as a useful method for its fixation by a chemical process. Highly efficient processesemploying recyclable CO2-phlilic homogeneous catalyst were devised for environmentally benign synthesis of cyclic carbonates and oxazolidinones under supercritical CO2 without any organic solvent. These processes represent pathways for greener chemical fixations of CO2 to afford industrial useful materials such as organic carbonates and oxazolidinones with great potential applications.

Keywords carbon dioxide      chemical utilization      molecular catalyst      carbonate      oxazolidinone     
Corresponding Author(s): HE Liangnian,Email:heln@nankai.edu.cn   
Issue Date: 05 June 2009
 Cite this article:   
Liangnian HE,Ya Du,Chengxia MIAO, et al. Methodologies for chemical utilization of CO2 to valuable compounds through molecular activation by efficient catalysts[J]. Front Chem Eng Chin, 0, (): 224-228.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-009-0067-y
https://academic.hep.com.cn/fcse/EN/Y0/V/I/224
Fig.1  A Co-catalyst with no co-catalyst for cycloaddition of CO with epoxides
Fig.2  Co-salen catalyst used in this study
Fig.3  Tentative mechanism for the coupling of epoxides and CO
Fig.4  Synthesis of PEG-supported guanidinium bromide
Fig.5  5 Synthesis of DMC from methanol, epoxides, and CO
Fig.6  Carboxylation of aziridine into oxazolidinone
Fig.7  A putative mechanism
Fig.8  Carboxylation of (S)-1-butyl-2-phenylaziridine into oxazolidinone
1 Dou X Y, Wang J Q, Du Y, Wang E, He L N. Guanidinium salt functionalized PEG: an effective and recyclable homogeneous catalyst for the synthesis of cyclic carbonates from CO2 and epoxides under solvent-free conditions. Synlett , 2007, 19: 3058–3062
2 Du Y, Wu Y, Liu A H, He L N. Quaternary ammonium bromide functionalized polyethylene glycol: A highly efficient and recyclable catalyst for selective synthesis of 5-aryl-2-oxazolidinones from carbon dioxide and aziridines under solvent-free conditions. J Org Chem , 2008, 73: 4709–4712
doi: 10.1021/jo800269v
3 Miao C X, Wang J Q, Wu Y, Du Y, He L N., Bifunctional metal-salen complexes as efficient catalysts for the fixation of CO2 with epoxides under solvent-free conditions. Chem Sus Chem , 2008, 1: 236–241
4 Du Y, Cai F, Kong D L, He L N. Organic solvent-free process for the synthesis of propylene carbonate from supercritical carbon dioxide and propylene oxide catalyzed by insoluble ion exchange resins. Green Chem , 2005, 7(7): 518–523
doi: 10.1039/b500074b
5 Du Y, Wang J Q, Chen J Y, Cai F, Tian J S, Kong D L, He L N. A poly(ethylene glycol)-supported quaternary ammonium salt for highly efficient and environmentally friendly chemical fixation of CO2 with epoxides under supercritical conditions. Tetrahedron Lett , 2006, 47(8): 1271–1275
doi: 10.1016/j.tetlet.2005.12.077
6 Miao C X, Wang J Q, He L N. Catalytic processes for chemical conversion of carbon dioxide into cyclic carbonates and polycarbonates. The Open Org Chem J , 2008, 2: 68–82 ; http://www.bentham.org/open/toocj/openaccess2.htm
7 Du Y, He L N, Kong D L. Magnesium-catalyzed synthesis of organic carbonate from 1,2-diol/alcohol and carbon dioxide. Catal Commun , 2008, 9: 1754–1758
doi: 10.1016/j.catcom.2008.02.004
8 Darensbourg D J, Holtcamp M W. Catalysts for the reactions of epoxides and carbon dioxide. Coord Chem Rev , 1996, 153: 155–174
doi: 10.1016/0010-8545(95)01232-X
9 Tian J S, Miao C X, Wang J Q, Cai F, Du Y, Zhao Y, and He L N. Efficient synthesis of dimethyl carbonate from methanol, propylene oxide and CO2 catalyzed by recyclable inorganic base/phosphonium halide-functionalized polyethylene glycol. Green Chem , 2007, 9: 566–571
doi: 10.1039/b614259a
10 Wang J Q, Cai F, Wang E, He L N. Supercritical carbon dioxide and poly(ethylene glycol): an environmentally benign biphasic solvent system for aerobic oxidation of styrene, one-pot synthesis of dimethyl carbonate catalyzed by n-Bu4NBr/n-Bu3N from methanol, epoxides, and supercritical CO2. Green Chem , 2007, 9: 882–887
doi: 10.1039/b701875d
11 Tian J S, Wang J Q, Chen J Y, Fan J G, Cai F, He L N. One-pot synthesis of dimethyl carbonate catalyzed by n-Bu4NBr/n-Bu3N from methanol, epoxides, and supercritical CO2. Appl Catal A: Gen , 2006, 301(2): 215–221
doi: 10.1016/j.apcata.2005.12.002
12 Du Y, Kong D L, Wang H Y, Cai F, Tian J S, Wang J Q, He L N. Sn-catalyzed synthesis of propylene carbonate from propylene glycol and CO2 under supercritical conditions. J Mol Catal A: Chem , 2005, 241: 233–237
doi: 10.1016/j.molcata.2005.07.030
13 Yasuda H, He L N, Sakakura T. Efficient synthesis of cyclic carbonate from carbon dioxide catalyzed by polyoxometalate: remarkable effects of metal substitution. J Catal , 2005, 233: 119–122
doi: 10.1016/j.jcat.2005.04.030
14 Yasuda H, He L N, Sakakura T. Cyclic carbonate synthesis from supercritical carbon dioxide and epoxide over lanthanide oxychloride. J Catal , 2002, 209: 547–550
doi: 10.1006/jcat.2002.3662
15 Zhao Y, He L N, Zhaung Y Y, Wang J Q. Dimethyl carbonate synthesis via transterification catalyzed by quaternary ammonium salts functionalized chitosan. Chin Chem Lett , 2008, 19: 286–290
doi: 10.1016/j.cclet.2007.12.033
16 Tomishige K, Yasuda H, Yoshida Y, Nurunnabi M, Li B, Kunimori K. Catalytic performance and properties of ceria based catalysts for cyclic carbonate synthesis from glycol and carbon dioxide. Green Chem , 2004, 6: 206–214
doi: 10.1039/b401215a
17 Parkin G. Synthetic analogues relevant to the structure and function of Zinc enzymes. Chem Rev , 2004, 104: 699–768
doi: 10.1021/cr0206263
18 Pacheco M A, Marshall C L. Review of dimethyl carbonate (DMC) manufacture and its characteristics as a fuel additive. Energy Fuels , 1991, 11: 2–29
doi: 10.1021/ef9600974
19 AurelioL, Brownlee R T C, Hughus A B. Synthetic preparation of N-methyl-a-amino acids. Chem Rev , 2004, 104: 5823–5846
doi: 10.1021/cr030024z
[1] Yuke Zhang, Hongxue Xu, Haonan Wu, Lijuan Shi, Jiancheng Wang, Qun Yi. Controllable construction of ionic frameworks for multi-site synergetic enhancement of CO2 capture[J]. Front. Chem. Sci. Eng., 2024, 18(1): 4-.
[2] Ting Li, Ji Xiong, Minghui Chen, Quan Shi, Xiangyu Li, Yu Jiang, Yaqing Feng, Bao Zhang. A tunable ionic covalent organic framework platform for efficient CO2 catalytic conversion[J]. Front. Chem. Sci. Eng., 2024, 18(1): 3-.
[3] Huiyi Li, Jianmin Gao, Jingjing Shan, Qian Du, Yu Zhang, Xin Guo, Shaohua Wu, Zhijiang Wang. Boosting the direct conversion of NH4HCO3 electrolyte to syngas on Ag/Zn zeolitic imidazolate framework derived nitrogen-carbon skeleton[J]. Front. Chem. Sci. Eng., 2023, 17(9): 1196-1207.
[4] Junjun Cheng, Yitao Zhao, Guohao Xu, Peng Zhang, Xuedong Zhu, Fan Yang. ZnxZr/HZSM-5 as efficient catalysts for alkylation of benzene with carbon dioxide[J]. Front. Chem. Sci. Eng., 2023, 17(4): 404-414.
[5] Xiangxiang Ren, Zhong-Pan Hu, Jingfeng Han, Yingxu Wei, Zhongmin Liu. Enhancing the aromatic selectivity of cyclohexane aromatization by CO2 coupling[J]. Front. Chem. Sci. Eng., 2023, 17(11): 1801-1808.
[6] Mónica P. S. Santos, Dawid P. Hanak. Carbon capture for decarbonisation of energy-intensive industries: a comparative review of techno-economic feasibility of solid looping cycles[J]. Front. Chem. Sci. Eng., 2022, 16(9): 1291-1317.
[7] Xuesong Lu, Xiaojiao Luo, Warren A. Thompson, Jeannie Z.Y. Tan, M. Mercedes Maroto-Valer. Investigation of carbon dioxide photoreduction process in a laboratory-scale photoreactor by computational fluid dynamic and reaction kinetic modeling[J]. Front. Chem. Sci. Eng., 2022, 16(7): 1149-1163.
[8] Xiangyu Liu, Yanling Pan, Peng Zhang, Yilin Wang, Guohao Xu, Zhaojie Su, Xuedong Zhu, Fan Yang. Alkylation of benzene with carbon dioxide to low-carbon aromatic hydrocarbons over bifunctional Zn-Ti/HZSM-5 catalyst[J]. Front. Chem. Sci. Eng., 2022, 16(3): 384-396.
[9] Iulian Patrașcu, Costin S. Bîldea, Anton A. Kiss. Novel eco-efficient reactive distillation process for dimethyl carbonate production by indirect alcoholysis of urea[J]. Front. Chem. Sci. Eng., 2022, 16(2): 316-331.
[10] Linlin You, Yandong Guo, Yanjing He, Feng Huo, Shaojuan Zeng, Chunshan Li, Xiangping Zhang, Xiaochun Zhang. Molecular level understanding of CO2 capture in ionic liquid/polyimide composite membrane[J]. Front. Chem. Sci. Eng., 2022, 16(2): 141-151.
[11] Yijian Li, Jianbo Hu, Jiyu Cui, Qingju Wang, Huabin Xing, Xili Cui. Efficient acetylene/carbon dioxide separation with excellent dynamic capacity and low regeneration energy by anion-pillared hybrid materials[J]. Front. Chem. Sci. Eng., 2022, 16(11): 1616-1622.
[12] Yujing Liu, Xiao Han, Balati Kuerbanjiang, Vlado K. Lazarov, Lidija Šiller. Effect of sodium bicarbonate solution on methyltrimethoxysilane-derived silica aerogels dried at ambient pressure[J]. Front. Chem. Sci. Eng., 2021, 15(4): 954-959.
[13] Zishuai Liu, Yimin Zhang, Zilin Dai, Jing Huang, Cong Liu. Coextraction of vanadium and manganese from high-manganese containing vanadium wastewater by a solvent extraction-precipitation process[J]. Front. Chem. Sci. Eng., 2020, 14(5): 902-912.
[14] Tingting Zhao, Niamat Ullah, Yajun Hui, Zhenhua Li. Review of plasma-assisted reactions and potential applications for modification of metal–organic frameworks[J]. Front. Chem. Sci. Eng., 2019, 13(3): 444-457.
[15] Guilan Chen, Xingfu Song, Shuying Sun, Yanxia Xu, Jianguo Yu. Solubility and diffusivity of CO2 in n-butanol+ N235 system and absorption mechanism of CO2 in a coupled reaction-extraction process[J]. Front. Chem. Sci. Eng., 2016, 10(4): 480-489.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed