Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Eng Chin    2009, Vol. 3 Issue (2) : 176-181    https://doi.org/10.1007/s11705-009-0203-8
FESEARCH ARTICLE
Phenolic rigid organic filler/isotactic polypropylene composites. III. Impact resistance property
Heming LIN, Dongming QI(), Jian HAN, Zhiqi CAI, Minghua WU
Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
 Download: PDF(339 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A novel phenolic rigid organic filler (KT) was used to modify isotactic polypropylene (iPP). The influence of KT particles on the impact resistance property of PP/KT specimens (with similar interparticles distance, 1.8 μm) was studied by notched izod impact tests. It was found that the brittle-ductile transition (BDT) of the PP/KT microcomposites took place at the filler content of about 4%, and the impact strength attains the maximum at 5% (with filler particles size of 1.5 μm), which is about 2.5 times that of unfilled iPP specimens. The impact fracture morphology was investigated by scanning electron microscopy (SEM). For the PP/KT specimens and the high-density polyethylene/KT (HDPE/KT) specimens in ductile fracture mode, many microfibers could be found on the whole impact fracture surface. It was the filler particles that induced the plastic deformation of interparticles ligament and hence improved the capability of iPP matrix on absorbing impact energy dramatically. The determinants on the BDT were further discussed on the basis of stress concentration and debonding resistance. It can be concluded that aside from the interparticle distance, the filler particles size also plays an important role in semicrystalline polymer toughening.

Keywords rigid organic filler      polypropylene      impact resistance     
Corresponding Author(s): QI Dongming,Email:dongmingqi@zstu.edu.cn   
Issue Date: 05 June 2009
 Cite this article:   
Heming LIN,Dongming QI,Jian HAN, et al. Phenolic rigid organic filler/isotactic polypropylene composites. III. Impact resistance property[J]. Front Chem Eng Chin, 2009, 3(2): 176-181.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-009-0203-8
https://academic.hep.com.cn/fcse/EN/Y2009/V3/I2/176
Fig.1  Scheme 1 Chemical structure of KT
Samplefiller content /%Dan) /μmPdia)IPDa) /μmmaximal diameter b) /μmTccry) /°Ccrystallinity c) /%
iPP0127.145.6
PP/KT-2.52.5≈1.011.181.82<4.3127.046.0
PP/KT-5.05.0≈1.491.171.81<5.7127.446.2
PP/KT-7.57.5≈1.881.141.74<6.3126.345.9
PP/KT-10.010.0≈2.371.201.80<9.8126.846.0
Tab.1  Filler dispersion parameters and PP crystallinity in PP/KT blends
Fig.2  Effect of filler content on the notched Izod impact strength of PP/KT composites
Fig.3  Typical SEM micrographs of Izod fracture surfaces of unfilled iPP (a, b, c) and PP/KT-5 (d, e, f) samples. The left pictures (a,d) represent the edge near the notched crack tip, the middle pictures (b,d) the middle part and the right pictures (c,f) the back part of fracture surface
Fig.4  Typical SEM micrographs of Izod fracture surfaces of PP/KT-2.5 (a), PP/KT-5 (b,c) and PP/KT-10 (d) specimens on the back part of fracture surface
Fig.5  Typical SEM micrographs of Izod fracture surfaces of HDPE/KT-5 samples. The left pictures (a, d) represent the edge near the notched crack tip, the middle pictures (b, d) the middle part and the right pictures (c, f) the back part of fracture surface
1 Karger-Kocsis J, ed. Polypropylene: composites, London: Chapman & Hall, 1995. Chapter 1
2 Baker R A, Koller L L, Kummer P E. Handbook of fillers for plastics, 2nd ed. New York: Van Nostrand Reinhold, 1987
3 Thio Y S, Argon A S, Cohen R E, Weinberg M. Toughening of isotactic polypropylene with CaCO3 particles. Polymer , 2002, 43(13): 3661-3674
doi: 10.1016/S0032-3861(02)00193-3
4 Zuiderduin W C J, Westzaan C, Huétink J, Gaymans R J. Toughening of polypropylene with calcium carbonate particles. Polymer , 2003, 44(1): 261-275
doi: 10.1016/S0032-3861(02)00769-3
5 Zhang Q X, Yu Z Z, Xie X L, Mai Y W. Crystallization and impact energy of polypropylene/CaCO3 nanocomposites with nonionic modifier. Polymer , 2004, 45(17): 5985-5994
doi: 10.1016/j.polymer.2004.06.044
6 Liang J Z, Li R K Y. Brittle-ductile transition in polypropylene filled with glass beads. Polymer , 1999, 40(11): 3191-3195
doi: 10.1016/S0032-3861(98)00532-1
7 Wu X, Zhu X, Qi Z. The 8th International conference on deformation, yield and fracture of polymers. London: The Plastics and Rubber Institute, 1991:78/1
8 Muratoglu O K, Argon A S, Cohen R E, Weinberg M. Crystalline morphology of polyamide-6 near planar surfaces. Polymer , 1995, 36(11): 2143-2152
doi: 10.1016/0032-3861(95)95289-D
9 Bartczak Z, Argon A S, Cohen R E, Kowalewski T. The morphology and orientation of polyethylene in films of sub-micron thickness crystallized in contact with calcite and rubber substrates. Polymer , 1999, 40(9): 2367-2380
doi: 10.1016/S0032-3861(98)00443-1
10 Muratoglu O K, Argon A S, Cohen R E, Weinberg M. Toughening mechanism of rubber-modified polyamides. Polymer , 1995, 36(5): 921-930
doi: 10.1016/0032-3861(95)93590-I
11 Muratoglu O K, Argon A S, Cohen R E, Weinberg M. Microstructural processes of fracture of rubber-modified polyamides. Polymer , 1995, 36(25): 4771-4786
doi: 10.1016/00323-8619(59)92934-
12 Wang Y, Fu Q, Li Q, Zhang G, Shen K, Wang Y Z. Ductile-brittle-transition phenomenon in polypropylene/ethylene-propylene-diene rubber blends obtained by dynamic packing injection molding: A new understanding of the rubber-toughening mechanism. J Polym Sci: Polym Phys , 2002, 40(18): 2086-2097
doi: 10.1002/polb.10260
13 Qi D M, Yang L, Wu M H, Lin H M, Nitta K H. Phenolic rigid organic filler/isotactic polypropylene composites. I. preparation. Frontiers of Chemical Engineering in China , 2008, 2(3): 236-241
doi: 10.1007/s11705-008-0034-z
14 Rong M Z, Zhang M Q, Zheng Y X, Zeng H M, Friedrich K. Improvement of tensile properties of nano-SiO2/PP composites in relation to percolation mechanism. Polymer , 2001, 42(7): 3301-3304
doi: 10.1016/S0032-3861(00)00741-2
15 Jancar J, Dianselmo A. The yield strength of particulate reinforced thermoplastic composites. Polym Eng Sci , 1992, 32(18): 1394-1399
doi: 10.1002/pen.760321809
16 Fu Q, Wanh G, Shen J. Polyethylene toughened by CaCO3 particle: Brittle-ductile transition of CaCO3-toughened HDPE. J Appl Polym Sci , 1993, 49(4): 673-677
doi: 10.1002/app.1993.070490412
17 Chen S G, Hu J W, Zhang M Q, Rong M Z, Zheng Q. Time dependent percolation of carbon black filled polymer composites in response to solvent vapor. J Mater Sci , 2005, 40(8): 2065-2068
doi: 10.1007/s10853-005-1236-0
18 Wang K, Wu J S, Zeng H M. Microstructure and fracture behavior of polypropylene/barium sulfate composites. J Appl Polym Sci , 2006, 99(3): 1207-1213
doi: 10.1002/app.22596
19 Bikiaris D N, Papageorgiou G Z, Pavlidou E, Vouroutzis N, Palatzoglou P, Karayannidis G P. Preparation by melt mixing and characterization of isotactic polypropylene/SiO2 nanocomposites containing untreated and surface-treated nanoparticles. J Appl Polym Sci , 2006, 100(4): 2684-2696
doi: 10.1002/app.22849
20 Dubnikova I L, Berezina S M, Antonov A V. Effect of rigid particle size on the toughness of filled polypropylene. J Appl Polym Sci , 2004, 94(5): 1917-1926
doi: 10.1002/app.21017
21 Hutchinson J W. Crack tip shielding by micro-cracking in brittle solids. Acta metallurgica , 1987, 35(7):1605-1619
doi: 10.1016/0001-6160(87)90108-8
22 Bartczak Z, Argon A S, Cohen R E, Weinberg M. Toughness mechanism in semi-crystalline polymer blends: I. High-density polyethylene toughened with rubbers Polymer,1999, 40 (9): 2331-2346 ; II. High-density polyethylene toughened with calcium carbonate filler particles. Polymer , 1999, 40(9): 2347-2365
doi: 10.1016/S0032-3861(98)00444-3
23 Qi D M, Shao J Z, Wu M H, Nitta K H. Phenolic rigid organic filler/isotactic polypropylene composites. II. tensile properites. Frontiers of Chemical Engineering in China , 2008, 2(4): 396-401
doi: 10.1007/s11705-008-0077-1
24 Mccrum N G, Buckley C B, Bucknall C B. Principles of Polymer Engineering. New York: Oxford University Press,, 1997
[1] Weixia Wang, Shuai Zhou, Zhong Xin, Yaoqi Shi, Shicheng Zhao. Polydimethylsiloxane assisted supercritical CO2 foaming behavior of high melt strength polypropylene grafted with styrene[J]. Front. Chem. Sci. Eng., 2016, 10(3): 396-404.
[2] Dongming QI, Xiaoli ZHAO, Zhijie CHEN, Peng HUANG, Jun CAO. Dispersion of a novel phenolic rigid organic filler in isotactic polypropylene matrix by solution-mixing and melt-mixing[J]. Front Chem Sci Eng, 2012, 6(4): 395-402.
[3] M. RAJASIMMAN, C. KARTHIKEYAN. Performance of inverse fluidized bed bioreactor in treating starch wastewater[J]. Front Chem Eng Chin, 2009, 3(3): 235-239.
[4] QI Dongming, SHAO Jianzhong, WU Minghua, NITTA Kohhei. Phenolic rigid organic filler/isotactic polypropylene composites. II. Tensile properties [J]. Front. Chem. Sci. Eng., 2008, 2(4): 396-401.
[5] QI Dongming, YANG Lei, WU Minghua, LIN Heming, NITTA Kohhei. Phenolic rigid organic filler/isotactic polypropylene composites. I. Preparation[J]. Front. Chem. Sci. Eng., 2008, 2(3): 236-241.
[6] CHEN Hanjia, SHI Xuhua, ZHU Yafei, ZHANG Yi, XU Jiarui. Synthesis and characterization of macromolecular surface modifier PP--PEG for polypropylene[J]. Front. Chem. Sci. Eng., 2008, 2(1): 102-108.
[7] KE Yangchuan, SUN Mingzhuo, SONG Yanxin, YANG GuangFu. Preparation and properties of nano SiO2 core-shell structured additives and their nanocomposite with polypropylene[J]. Front. Chem. Sci. Eng., 2007, 1(1): 76-80.
[8] LIN Zhidan, ZENG Chunlian, MAI Kancheng. Investigation on multiple-melting behavior of nano-CaCO3/polypropylene composites[J]. Front. Chem. Sci. Eng., 2007, 1(1): 81-86.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed